Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{2x+33}=3+\sqrt{2x}
Me tango -\sqrt{2x} mai i ngā taha e rua o te whārite.
\left(\sqrt{2x+33}\right)^{2}=\left(3+\sqrt{2x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2x+33=\left(3+\sqrt{2x}\right)^{2}
Tātaihia te \sqrt{2x+33} mā te pū o 2, kia riro ko 2x+33.
2x+33=9+6\sqrt{2x}+\left(\sqrt{2x}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3+\sqrt{2x}\right)^{2}.
2x+33=9+6\sqrt{2x}+2x
Tātaihia te \sqrt{2x} mā te pū o 2, kia riro ko 2x.
2x+33-6\sqrt{2x}=9+2x
Tangohia te 6\sqrt{2x} mai i ngā taha e rua.
2x+33-6\sqrt{2x}-2x=9
Tangohia te 2x mai i ngā taha e rua.
33-6\sqrt{2x}=9
Pahekotia te 2x me -2x, ka 0.
-6\sqrt{2x}=9-33
Tangohia te 33 mai i ngā taha e rua.
-6\sqrt{2x}=-24
Tangohia te 33 i te 9, ka -24.
\sqrt{2x}=\frac{-24}{-6}
Whakawehea ngā taha e rua ki te -6.
\sqrt{2x}=4
Whakawehea te -24 ki te -6, kia riro ko 4.
2x=16
Pūruatia ngā taha e rua o te whārite.
\frac{2x}{2}=\frac{16}{2}
Whakawehea ngā taha e rua ki te 2.
x=\frac{16}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x=8
Whakawehe 16 ki te 2.
\sqrt{2\times 8+33}-\sqrt{2\times 8}=3
Whakakapia te 8 mō te x i te whārite \sqrt{2x+33}-\sqrt{2x}=3.
3=3
Whakarūnātia. Ko te uara x=8 kua ngata te whārite.
x=8
Ko te whārite \sqrt{2x+33}=\sqrt{2x}+3 he rongoā ahurei.