Whakaoti mō x
x=8
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{2x+33}=3+\sqrt{2x}
Me tango -\sqrt{2x} mai i ngā taha e rua o te whārite.
\left(\sqrt{2x+33}\right)^{2}=\left(3+\sqrt{2x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2x+33=\left(3+\sqrt{2x}\right)^{2}
Tātaihia te \sqrt{2x+33} mā te pū o 2, kia riro ko 2x+33.
2x+33=9+6\sqrt{2x}+\left(\sqrt{2x}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3+\sqrt{2x}\right)^{2}.
2x+33=9+6\sqrt{2x}+2x
Tātaihia te \sqrt{2x} mā te pū o 2, kia riro ko 2x.
2x+33-6\sqrt{2x}=9+2x
Tangohia te 6\sqrt{2x} mai i ngā taha e rua.
2x+33-6\sqrt{2x}-2x=9
Tangohia te 2x mai i ngā taha e rua.
33-6\sqrt{2x}=9
Pahekotia te 2x me -2x, ka 0.
-6\sqrt{2x}=9-33
Tangohia te 33 mai i ngā taha e rua.
-6\sqrt{2x}=-24
Tangohia te 33 i te 9, ka -24.
\sqrt{2x}=\frac{-24}{-6}
Whakawehea ngā taha e rua ki te -6.
\sqrt{2x}=4
Whakawehea te -24 ki te -6, kia riro ko 4.
2x=16
Pūruatia ngā taha e rua o te whārite.
\frac{2x}{2}=\frac{16}{2}
Whakawehea ngā taha e rua ki te 2.
x=\frac{16}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x=8
Whakawehe 16 ki te 2.
\sqrt{2\times 8+33}-\sqrt{2\times 8}=3
Whakakapia te 8 mō te x i te whārite \sqrt{2x+33}-\sqrt{2x}=3.
3=3
Whakarūnātia. Ko te uara x=8 kua ngata te whārite.
x=8
Ko te whārite \sqrt{2x+33}=\sqrt{2x}+3 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}