Whakaoti mō x
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{2x+16}\right)^{2}=\left(2x+4\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2x+16=\left(2x+4\right)^{2}
Tātaihia te \sqrt{2x+16} mā te pū o 2, kia riro ko 2x+16.
2x+16=4x^{2}+16x+16
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+4\right)^{2}.
2x+16-4x^{2}=16x+16
Tangohia te 4x^{2} mai i ngā taha e rua.
2x+16-4x^{2}-16x=16
Tangohia te 16x mai i ngā taha e rua.
-14x+16-4x^{2}=16
Pahekotia te 2x me -16x, ka -14x.
-14x+16-4x^{2}-16=0
Tangohia te 16 mai i ngā taha e rua.
-14x-4x^{2}=0
Tangohia te 16 i te 16, ka 0.
x\left(-14-4x\right)=0
Tauwehea te x.
x=0 x=-\frac{7}{2}
Hei kimi otinga whārite, me whakaoti te x=0 me te -14-4x=0.
\sqrt{2\times 0+16}=2\times 0+4
Whakakapia te 0 mō te x i te whārite \sqrt{2x+16}=2x+4.
4=4
Whakarūnātia. Ko te uara x=0 kua ngata te whārite.
\sqrt{2\left(-\frac{7}{2}\right)+16}=2\left(-\frac{7}{2}\right)+4
Whakakapia te -\frac{7}{2} mō te x i te whārite \sqrt{2x+16}=2x+4.
3=-3
Whakarūnātia. Ko te uara x=-\frac{7}{2} kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=0
Ko te whārite \sqrt{2x+16}=2x+4 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}