Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{2x+16}\right)^{2}=\left(2x+4\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2x+16=\left(2x+4\right)^{2}
Tātaihia te \sqrt{2x+16} mā te pū o 2, kia riro ko 2x+16.
2x+16=4x^{2}+16x+16
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+4\right)^{2}.
2x+16-4x^{2}=16x+16
Tangohia te 4x^{2} mai i ngā taha e rua.
2x+16-4x^{2}-16x=16
Tangohia te 16x mai i ngā taha e rua.
-14x+16-4x^{2}=16
Pahekotia te 2x me -16x, ka -14x.
-14x+16-4x^{2}-16=0
Tangohia te 16 mai i ngā taha e rua.
-14x-4x^{2}=0
Tangohia te 16 i te 16, ka 0.
x\left(-14-4x\right)=0
Tauwehea te x.
x=0 x=-\frac{7}{2}
Hei kimi otinga whārite, me whakaoti te x=0 me te -14-4x=0.
\sqrt{2\times 0+16}=2\times 0+4
Whakakapia te 0 mō te x i te whārite \sqrt{2x+16}=2x+4.
4=4
Whakarūnātia. Ko te uara x=0 kua ngata te whārite.
\sqrt{2\left(-\frac{7}{2}\right)+16}=2\left(-\frac{7}{2}\right)+4
Whakakapia te -\frac{7}{2} mō te x i te whārite \sqrt{2x+16}=2x+4.
3=-3
Whakarūnātia. Ko te uara x=-\frac{7}{2} kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=0
Ko te whārite \sqrt{2x+16}=2x+4 he rongoā ahurei.