Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{2x+1}=2\sqrt{3}+\sqrt{x+2}
Me tango -\sqrt{x+2} mai i ngā taha e rua o te whārite.
\left(\sqrt{2x+1}\right)^{2}=\left(2\sqrt{3}+\sqrt{x+2}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2x+1=\left(2\sqrt{3}+\sqrt{x+2}\right)^{2}
Tātaihia te \sqrt{2x+1} mā te pū o 2, kia riro ko 2x+1.
2x+1=4\left(\sqrt{3}\right)^{2}+4\sqrt{3}\sqrt{x+2}+\left(\sqrt{x+2}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2\sqrt{3}+\sqrt{x+2}\right)^{2}.
2x+1=4\times 3+4\sqrt{3}\sqrt{x+2}+\left(\sqrt{x+2}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
2x+1=12+4\sqrt{3}\sqrt{x+2}+\left(\sqrt{x+2}\right)^{2}
Whakareatia te 4 ki te 3, ka 12.
2x+1=12+4\sqrt{3}\sqrt{x+2}+x+2
Tātaihia te \sqrt{x+2} mā te pū o 2, kia riro ko x+2.
2x+1=14+4\sqrt{3}\sqrt{x+2}+x
Tāpirihia te 12 ki te 2, ka 14.
2x+1-\left(14+x\right)=4\sqrt{3}\sqrt{x+2}
Me tango 14+x mai i ngā taha e rua o te whārite.
2x+1-14-x=4\sqrt{3}\sqrt{x+2}
Hei kimi i te tauaro o 14+x, kimihia te tauaro o ia taurangi.
2x-13-x=4\sqrt{3}\sqrt{x+2}
Tangohia te 14 i te 1, ka -13.
x-13=4\sqrt{3}\sqrt{x+2}
Pahekotia te 2x me -x, ka x.
\left(x-13\right)^{2}=\left(4\sqrt{3}\sqrt{x+2}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}-26x+169=\left(4\sqrt{3}\sqrt{x+2}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-13\right)^{2}.
x^{2}-26x+169=4^{2}\left(\sqrt{3}\right)^{2}\left(\sqrt{x+2}\right)^{2}
Whakarohaina te \left(4\sqrt{3}\sqrt{x+2}\right)^{2}.
x^{2}-26x+169=16\left(\sqrt{3}\right)^{2}\left(\sqrt{x+2}\right)^{2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
x^{2}-26x+169=16\times 3\left(\sqrt{x+2}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
x^{2}-26x+169=48\left(\sqrt{x+2}\right)^{2}
Whakareatia te 16 ki te 3, ka 48.
x^{2}-26x+169=48\left(x+2\right)
Tātaihia te \sqrt{x+2} mā te pū o 2, kia riro ko x+2.
x^{2}-26x+169=48x+96
Whakamahia te āhuatanga tohatoha hei whakarea te 48 ki te x+2.
x^{2}-26x+169-48x=96
Tangohia te 48x mai i ngā taha e rua.
x^{2}-74x+169=96
Pahekotia te -26x me -48x, ka -74x.
x^{2}-74x+169-96=0
Tangohia te 96 mai i ngā taha e rua.
x^{2}-74x+73=0
Tangohia te 96 i te 169, ka 73.
a+b=-74 ab=73
Hei whakaoti i te whārite, whakatauwehea te x^{2}-74x+73 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-73 b=-1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x-73\right)\left(x-1\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=73 x=1
Hei kimi otinga whārite, me whakaoti te x-73=0 me te x-1=0.
\sqrt{2\times 73+1}-\sqrt{73+2}=2\sqrt{3}
Whakakapia te 73 mō te x i te whārite \sqrt{2x+1}-\sqrt{x+2}=2\sqrt{3}.
2\times 3^{\frac{1}{2}}=2\times 3^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=73 kua ngata te whārite.
\sqrt{2\times 1+1}-\sqrt{1+2}=2\sqrt{3}
Whakakapia te 1 mō te x i te whārite \sqrt{2x+1}-\sqrt{x+2}=2\sqrt{3}.
0=2\times 3^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=1 kāore e ngata ana ki te whārite.
\sqrt{2\times 73+1}-\sqrt{73+2}=2\sqrt{3}
Whakakapia te 73 mō te x i te whārite \sqrt{2x+1}-\sqrt{x+2}=2\sqrt{3}.
2\times 3^{\frac{1}{2}}=2\times 3^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=73 kua ngata te whārite.
x=73
Ko te whārite \sqrt{2x+1}=\sqrt{x+2}+2\sqrt{3} he rongoā ahurei.