Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{2x+1}\right)^{2}=\left(x-1\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2x+1=\left(x-1\right)^{2}
Tātaihia te \sqrt{2x+1} mā te pū o 2, kia riro ko 2x+1.
2x+1=x^{2}-2x+1
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
2x+1-x^{2}=-2x+1
Tangohia te x^{2} mai i ngā taha e rua.
2x+1-x^{2}+2x=1
Me tāpiri te 2x ki ngā taha e rua.
4x+1-x^{2}=1
Pahekotia te 2x me 2x, ka 4x.
4x+1-x^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
4x-x^{2}=0
Tangohia te 1 i te 1, ka 0.
x\left(4-x\right)=0
Tauwehea te x.
x=0 x=4
Hei kimi otinga whārite, me whakaoti te x=0 me te 4-x=0.
\sqrt{2\times 0+1}=0-1
Whakakapia te 0 mō te x i te whārite \sqrt{2x+1}=x-1.
1=-1
Whakarūnātia. Ko te uara x=0 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
\sqrt{2\times 4+1}=4-1
Whakakapia te 4 mō te x i te whārite \sqrt{2x+1}=x-1.
3=3
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
x=4
Ko te whārite \sqrt{2x+1}=x-1 he rongoā ahurei.