Whakaoti mō x
x=12
Graph
Pātaitai
Algebra
\sqrt { 2 x + 1 } = 5
Tohaina
Kua tāruatia ki te papatopenga
2x+1=25
Pūruatia ngā taha e rua o te whārite.
2x+1-1=25-1
Me tango 1 mai i ngā taha e rua o te whārite.
2x=25-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
2x=24
Tango 1 mai i 25.
\frac{2x}{2}=\frac{24}{2}
Whakawehea ngā taha e rua ki te 2.
x=\frac{24}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x=12
Whakawehe 24 ki te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}