Tīpoka ki ngā ihirangi matua
Whakaoti mō u
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{2u+3}\right)^{2}=\left(\sqrt{-2u-1}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2u+3=\left(\sqrt{-2u-1}\right)^{2}
Tātaihia te \sqrt{2u+3} mā te pū o 2, kia riro ko 2u+3.
2u+3=-2u-1
Tātaihia te \sqrt{-2u-1} mā te pū o 2, kia riro ko -2u-1.
2u+3+2u=-1
Me tāpiri te 2u ki ngā taha e rua.
4u+3=-1
Pahekotia te 2u me 2u, ka 4u.
4u=-1-3
Tangohia te 3 mai i ngā taha e rua.
4u=-4
Tangohia te 3 i te -1, ka -4.
u=\frac{-4}{4}
Whakawehea ngā taha e rua ki te 4.
u=-1
Whakawehea te -4 ki te 4, kia riro ko -1.
\sqrt{2\left(-1\right)+3}=\sqrt{-2\left(-1\right)-1}
Whakakapia te -1 mō te u i te whārite \sqrt{2u+3}=\sqrt{-2u-1}.
1=1
Whakarūnātia. Ko te uara u=-1 kua ngata te whārite.
u=-1
Ko te whārite \sqrt{2u+3}=\sqrt{-2u-1} he rongoā ahurei.