Whakaoti mō a
a=6
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{2a-3}=a-3
Me tango 3 mai i ngā taha e rua o te whārite.
\left(\sqrt{2a-3}\right)^{2}=\left(a-3\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2a-3=\left(a-3\right)^{2}
Tātaihia te \sqrt{2a-3} mā te pū o 2, kia riro ko 2a-3.
2a-3=a^{2}-6a+9
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(a-3\right)^{2}.
2a-3-a^{2}=-6a+9
Tangohia te a^{2} mai i ngā taha e rua.
2a-3-a^{2}+6a=9
Me tāpiri te 6a ki ngā taha e rua.
8a-3-a^{2}=9
Pahekotia te 2a me 6a, ka 8a.
8a-3-a^{2}-9=0
Tangohia te 9 mai i ngā taha e rua.
8a-12-a^{2}=0
Tangohia te 9 i te -3, ka -12.
-a^{2}+8a-12=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=8 ab=-\left(-12\right)=12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -a^{2}+aa+ba-12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,12 2,6 3,4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
1+12=13 2+6=8 3+4=7
Tātaihia te tapeke mō ia takirua.
a=6 b=2
Ko te otinga te takirua ka hoatu i te tapeke 8.
\left(-a^{2}+6a\right)+\left(2a-12\right)
Tuhia anō te -a^{2}+8a-12 hei \left(-a^{2}+6a\right)+\left(2a-12\right).
-a\left(a-6\right)+2\left(a-6\right)
Tauwehea te -a i te tuatahi me te 2 i te rōpū tuarua.
\left(a-6\right)\left(-a+2\right)
Whakatauwehea atu te kīanga pātahi a-6 mā te whakamahi i te āhuatanga tātai tohatoha.
a=6 a=2
Hei kimi otinga whārite, me whakaoti te a-6=0 me te -a+2=0.
\sqrt{2\times 6-3}+3=6
Whakakapia te 6 mō te a i te whārite \sqrt{2a-3}+3=a.
6=6
Whakarūnātia. Ko te uara a=6 kua ngata te whārite.
\sqrt{2\times 2-3}+3=2
Whakakapia te 2 mō te a i te whārite \sqrt{2a-3}+3=a.
4=2
Whakarūnātia. Ko te uara a=2 kāore e ngata ana ki te whārite.
a=6
Ko te whārite \sqrt{2a-3}=a-3 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}