Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{2-x}\right)^{2}=\left(x-1\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2-x=\left(x-1\right)^{2}
Tātaihia te \sqrt{2-x} mā te pū o 2, kia riro ko 2-x.
2-x=x^{2}-2x+1
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
2-x-x^{2}=-2x+1
Tangohia te x^{2} mai i ngā taha e rua.
2-x-x^{2}+2x=1
Me tāpiri te 2x ki ngā taha e rua.
2+x-x^{2}=1
Pahekotia te -x me 2x, ka x.
2+x-x^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
1+x-x^{2}=0
Tangohia te 1 i te 2, ka 1.
-x^{2}+x+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 1 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-1\right)}}{2\left(-1\right)}
Pūrua 1.
x=\frac{-1±\sqrt{1+4}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-1±\sqrt{5}}{2\left(-1\right)}
Tāpiri 1 ki te 4.
x=\frac{-1±\sqrt{5}}{-2}
Whakareatia 2 ki te -1.
x=\frac{\sqrt{5}-1}{-2}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{5}}{-2} ina he tāpiri te ±. Tāpiri -1 ki te \sqrt{5}.
x=\frac{1-\sqrt{5}}{2}
Whakawehe -1+\sqrt{5} ki te -2.
x=\frac{-\sqrt{5}-1}{-2}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{5}}{-2} ina he tango te ±. Tango \sqrt{5} mai i -1.
x=\frac{\sqrt{5}+1}{2}
Whakawehe -1-\sqrt{5} ki te -2.
x=\frac{1-\sqrt{5}}{2} x=\frac{\sqrt{5}+1}{2}
Kua oti te whārite te whakatau.
\sqrt{2-\frac{1-\sqrt{5}}{2}}=\frac{1-\sqrt{5}}{2}-1
Whakakapia te \frac{1-\sqrt{5}}{2} mō te x i te whārite \sqrt{2-x}=x-1.
\frac{1}{2}+\frac{1}{2}\times 5^{\frac{1}{2}}=-\frac{1}{2}-\frac{1}{2}\times 5^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{1-\sqrt{5}}{2} kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
\sqrt{2-\frac{\sqrt{5}+1}{2}}=\frac{\sqrt{5}+1}{2}-1
Whakakapia te \frac{\sqrt{5}+1}{2} mō te x i te whārite \sqrt{2-x}=x-1.
-\left(\frac{1}{2}-\frac{1}{2}\times 5^{\frac{1}{2}}\right)=\frac{1}{2}\times 5^{\frac{1}{2}}-\frac{1}{2}
Whakarūnātia. Ko te uara x=\frac{\sqrt{5}+1}{2} kua ngata te whārite.
x=\frac{\sqrt{5}+1}{2}
Ko te whārite \sqrt{2-x}=x-1 he rongoā ahurei.