Whakaoti mō x
x = \frac{\sqrt{5} + 1}{2} \approx 1.618033989
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{2-x}\right)^{2}=\left(x-1\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2-x=\left(x-1\right)^{2}
Tātaihia te \sqrt{2-x} mā te pū o 2, kia riro ko 2-x.
2-x=x^{2}-2x+1
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
2-x-x^{2}=-2x+1
Tangohia te x^{2} mai i ngā taha e rua.
2-x-x^{2}+2x=1
Me tāpiri te 2x ki ngā taha e rua.
2+x-x^{2}=1
Pahekotia te -x me 2x, ka x.
2+x-x^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
1+x-x^{2}=0
Tangohia te 1 i te 2, ka 1.
-x^{2}+x+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 1 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-1\right)}}{2\left(-1\right)}
Pūrua 1.
x=\frac{-1±\sqrt{1+4}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-1±\sqrt{5}}{2\left(-1\right)}
Tāpiri 1 ki te 4.
x=\frac{-1±\sqrt{5}}{-2}
Whakareatia 2 ki te -1.
x=\frac{\sqrt{5}-1}{-2}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{5}}{-2} ina he tāpiri te ±. Tāpiri -1 ki te \sqrt{5}.
x=\frac{1-\sqrt{5}}{2}
Whakawehe -1+\sqrt{5} ki te -2.
x=\frac{-\sqrt{5}-1}{-2}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{5}}{-2} ina he tango te ±. Tango \sqrt{5} mai i -1.
x=\frac{\sqrt{5}+1}{2}
Whakawehe -1-\sqrt{5} ki te -2.
x=\frac{1-\sqrt{5}}{2} x=\frac{\sqrt{5}+1}{2}
Kua oti te whārite te whakatau.
\sqrt{2-\frac{1-\sqrt{5}}{2}}=\frac{1-\sqrt{5}}{2}-1
Whakakapia te \frac{1-\sqrt{5}}{2} mō te x i te whārite \sqrt{2-x}=x-1.
\frac{1}{2}+\frac{1}{2}\times 5^{\frac{1}{2}}=-\frac{1}{2}-\frac{1}{2}\times 5^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{1-\sqrt{5}}{2} kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
\sqrt{2-\frac{\sqrt{5}+1}{2}}=\frac{\sqrt{5}+1}{2}-1
Whakakapia te \frac{\sqrt{5}+1}{2} mō te x i te whārite \sqrt{2-x}=x-1.
-\left(\frac{1}{2}-\frac{1}{2}\times 5^{\frac{1}{2}}\right)=\frac{1}{2}\times 5^{\frac{1}{2}}-\frac{1}{2}
Whakarūnātia. Ko te uara x=\frac{\sqrt{5}+1}{2} kua ngata te whārite.
x=\frac{\sqrt{5}+1}{2}
Ko te whārite \sqrt{2-x}=x-1 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}