Whakaoti mō x
x=-2\sqrt{2}\approx -2.828427125
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\sqrt { 2 } ( x - 1 ) = 2 ( x - 2 ) + 3 \sqrt { 2 }
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{2}x-\sqrt{2}=2\left(x-2\right)+3\sqrt{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \sqrt{2} ki te x-1.
\sqrt{2}x-\sqrt{2}=2x-4+3\sqrt{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-2.
\sqrt{2}x-\sqrt{2}-2x=-4+3\sqrt{2}
Tangohia te 2x mai i ngā taha e rua.
\sqrt{2}x-2x=-4+3\sqrt{2}+\sqrt{2}
Me tāpiri te \sqrt{2} ki ngā taha e rua.
\sqrt{2}x-2x=-4+4\sqrt{2}
Pahekotia te 3\sqrt{2} me \sqrt{2}, ka 4\sqrt{2}.
\left(\sqrt{2}-2\right)x=-4+4\sqrt{2}
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(\sqrt{2}-2\right)x=4\sqrt{2}-4
He hanga arowhānui tō te whārite.
\frac{\left(\sqrt{2}-2\right)x}{\sqrt{2}-2}=\frac{4\sqrt{2}-4}{\sqrt{2}-2}
Whakawehea ngā taha e rua ki te \sqrt{2}-2.
x=\frac{4\sqrt{2}-4}{\sqrt{2}-2}
Mā te whakawehe ki te \sqrt{2}-2 ka wetekia te whakareanga ki te \sqrt{2}-2.
x=-2\sqrt{2}
Whakawehe -4+4\sqrt{2} ki te \sqrt{2}-2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}