Aromātai
96
Tauwehe
2^{5}\times 3
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{2}\sqrt{2}\sqrt{4}\sqrt{18}\sqrt{32}
Tauwehea te 8=2\times 4. Tuhia anō te pūtake rua o te hua \sqrt{2\times 4} hei hua o ngā pūtake rua \sqrt{2}\sqrt{4}.
2\sqrt{4}\sqrt{18}\sqrt{32}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
2\sqrt{4}\sqrt{18}\sqrt{4}\sqrt{8}
Tauwehea te 32=4\times 8. Tuhia anō te pūtake rua o te hua \sqrt{4\times 8} hei hua o ngā pūtake rua \sqrt{4}\sqrt{8}.
2\times 4\sqrt{18}\sqrt{8}
Whakareatia te \sqrt{4} ki te \sqrt{4}, ka 4.
8\sqrt{18}\sqrt{8}
Whakareatia te 2 ki te 4, ka 8.
8\times 3\sqrt{2}\sqrt{8}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
24\sqrt{2}\sqrt{8}
Whakareatia te 8 ki te 3, ka 24.
24\sqrt{2}\times 2\sqrt{2}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
48\sqrt{2}\sqrt{2}
Whakareatia te 24 ki te 2, ka 48.
48\times 2
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
96
Whakareatia te 48 ki te 2, ka 96.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}