Aromātai
7
Tauwehe
7
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{72+\frac{576}{8}}+\left(\sqrt{9}-\sqrt{4}\right)^{2}-\left(7+8-2-\left(5-4\right)\right)+6
Whakareatia te 2 ki te 36, ka 72.
\sqrt{72+72}+\left(\sqrt{9}-\sqrt{4}\right)^{2}-\left(7+8-2-\left(5-4\right)\right)+6
Whakawehea te 576 ki te 8, kia riro ko 72.
\sqrt{144}+\left(\sqrt{9}-\sqrt{4}\right)^{2}-\left(7+8-2-\left(5-4\right)\right)+6
Tāpirihia te 72 ki te 72, ka 144.
12+\left(\sqrt{9}-\sqrt{4}\right)^{2}-\left(7+8-2-\left(5-4\right)\right)+6
Tātaitia te pūtakerua o 144 kia tae ki 12.
12+\left(3-\sqrt{4}\right)^{2}-\left(7+8-2-\left(5-4\right)\right)+6
Tātaitia te pūtakerua o 9 kia tae ki 3.
12+\left(3-2\right)^{2}-\left(7+8-2-\left(5-4\right)\right)+6
Tātaitia te pūtakerua o 4 kia tae ki 2.
12+1^{2}-\left(7+8-2-\left(5-4\right)\right)+6
Tangohia te 2 i te 3, ka 1.
12+1-\left(7+8-2-\left(5-4\right)\right)+6
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
12+1-\left(15-2-\left(5-4\right)\right)+6
Tāpirihia te 7 ki te 8, ka 15.
12+1-\left(13-\left(5-4\right)\right)+6
Tangohia te 2 i te 15, ka 13.
12+1-\left(13-1\right)+6
Tangohia te 4 i te 5, ka 1.
12+1-12+6
Tangohia te 1 i te 13, ka 12.
12-11+6
Tangohia te 12 i te 1, ka -11.
1+6
Tangohia te 11 i te 12, ka 1.
7
Tāpirihia te 1 ki te 6, ka 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}