Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\frac{4+1}{2}}-3\sqrt{28}
Whakareatia te 2 ki te 2, ka 4.
\sqrt{\frac{5}{2}}-3\sqrt{28}
Tāpirihia te 4 ki te 1, ka 5.
\frac{\sqrt{5}}{\sqrt{2}}-3\sqrt{28}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{5}{2}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{5}}{\sqrt{2}}.
\frac{\sqrt{5}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-3\sqrt{28}
Whakangāwaritia te tauraro o \frac{\sqrt{5}}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\sqrt{5}\sqrt{2}}{2}-3\sqrt{28}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\sqrt{10}}{2}-3\sqrt{28}
Hei whakarea \sqrt{5} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{10}}{2}-3\times 2\sqrt{7}
Tauwehea te 28=2^{2}\times 7. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 7} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{7}. Tuhia te pūtakerua o te 2^{2}.
\frac{\sqrt{10}}{2}-6\sqrt{7}
Whakareatia te -3 ki te 2, ka -6.
\frac{\sqrt{10}}{2}+\frac{2\left(-6\right)\sqrt{7}}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -6\sqrt{7} ki te \frac{2}{2}.
\frac{\sqrt{10}+2\left(-6\right)\sqrt{7}}{2}
Tā te mea he rite te tauraro o \frac{\sqrt{10}}{2} me \frac{2\left(-6\right)\sqrt{7}}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\sqrt{10}-12\sqrt{7}}{2}
Mahia ngā whakarea i roto o \sqrt{10}+2\left(-6\right)\sqrt{7}.