Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\frac{24+1}{12}}
Whakareatia te 2 ki te 12, ka 24.
\sqrt{\frac{25}{12}}
Tāpirihia te 24 ki te 1, ka 25.
\frac{\sqrt{25}}{\sqrt{12}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{25}{12}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{25}}{\sqrt{12}}.
\frac{5}{\sqrt{12}}
Tātaitia te pūtakerua o 25 kia tae ki 5.
\frac{5}{2\sqrt{3}}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
\frac{5\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{5}{2\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{5\sqrt{3}}{2\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{5\sqrt{3}}{6}
Whakareatia te 2 ki te 3, ka 6.