Aromātai
9
Tauwehe
3^{2}
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{4+9^{2}+15}+\sqrt{25}-\sqrt{36}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\sqrt{4+81+15}+\sqrt{25}-\sqrt{36}
Tātaihia te 9 mā te pū o 2, kia riro ko 81.
\sqrt{85+15}+\sqrt{25}-\sqrt{36}
Tāpirihia te 4 ki te 81, ka 85.
\sqrt{100}+\sqrt{25}-\sqrt{36}
Tāpirihia te 85 ki te 15, ka 100.
10+\sqrt{25}-\sqrt{36}
Tātaitia te pūtakerua o 100 kia tae ki 10.
10+5-\sqrt{36}
Tātaitia te pūtakerua o 25 kia tae ki 5.
15-\sqrt{36}
Tāpirihia te 10 ki te 5, ka 15.
15-6
Tātaitia te pūtakerua o 36 kia tae ki 6.
9
Tangohia te 6 i te 15, ka 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}