Aromātai
6\sqrt{201}\approx 85.064681273
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{324+\left(\frac{144}{\sqrt{3}}\right)^{2}}
Tātaihia te 18 mā te pū o 2, kia riro ko 324.
\sqrt{324+\left(\frac{144\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}}
Whakangāwaritia te tauraro o \frac{144}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\sqrt{324+\left(\frac{144\sqrt{3}}{3}\right)^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\sqrt{324+\left(48\sqrt{3}\right)^{2}}
Whakawehea te 144\sqrt{3} ki te 3, kia riro ko 48\sqrt{3}.
\sqrt{324+48^{2}\left(\sqrt{3}\right)^{2}}
Whakarohaina te \left(48\sqrt{3}\right)^{2}.
\sqrt{324+2304\left(\sqrt{3}\right)^{2}}
Tātaihia te 48 mā te pū o 2, kia riro ko 2304.
\sqrt{324+2304\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\sqrt{324+6912}
Whakareatia te 2304 ki te 3, ka 6912.
\sqrt{7236}
Tāpirihia te 324 ki te 6912, ka 7236.
6\sqrt{201}
Tauwehea te 7236=6^{2}\times 201. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 201} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{201}. Tuhia te pūtakerua o te 6^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}