Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{324+\left(\frac{144}{\sqrt{3}}\right)^{2}}
Tātaihia te 18 mā te pū o 2, kia riro ko 324.
\sqrt{324+\left(\frac{144\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}}
Whakangāwaritia te tauraro o \frac{144}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\sqrt{324+\left(\frac{144\sqrt{3}}{3}\right)^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\sqrt{324+\left(48\sqrt{3}\right)^{2}}
Whakawehea te 144\sqrt{3} ki te 3, kia riro ko 48\sqrt{3}.
\sqrt{324+48^{2}\left(\sqrt{3}\right)^{2}}
Whakarohaina te \left(48\sqrt{3}\right)^{2}.
\sqrt{324+2304\left(\sqrt{3}\right)^{2}}
Tātaihia te 48 mā te pū o 2, kia riro ko 2304.
\sqrt{324+2304\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\sqrt{324+6912}
Whakareatia te 2304 ki te 3, ka 6912.
\sqrt{7236}
Tāpirihia te 324 ki te 6912, ka 7236.
6\sqrt{201}
Tauwehea te 7236=6^{2}\times 201. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 201} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{201}. Tuhia te pūtakerua o te 6^{2}.