Whakaoti mō x
x=8
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{16-2x}\right)^{2}=\left(2\sqrt{x-8}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
16-2x=\left(2\sqrt{x-8}\right)^{2}
Tātaihia te \sqrt{16-2x} mā te pū o 2, kia riro ko 16-2x.
16-2x=2^{2}\left(\sqrt{x-8}\right)^{2}
Whakarohaina te \left(2\sqrt{x-8}\right)^{2}.
16-2x=4\left(\sqrt{x-8}\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
16-2x=4\left(x-8\right)
Tātaihia te \sqrt{x-8} mā te pū o 2, kia riro ko x-8.
16-2x=4x-32
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x-8.
16-2x-4x=-32
Tangohia te 4x mai i ngā taha e rua.
16-6x=-32
Pahekotia te -2x me -4x, ka -6x.
-6x=-32-16
Tangohia te 16 mai i ngā taha e rua.
-6x=-48
Tangohia te 16 i te -32, ka -48.
x=\frac{-48}{-6}
Whakawehea ngā taha e rua ki te -6.
x=8
Whakawehea te -48 ki te -6, kia riro ko 8.
\sqrt{16-2\times 8}=2\sqrt{8-8}
Whakakapia te 8 mō te x i te whārite \sqrt{16-2x}=2\sqrt{x-8}.
0=0
Whakarūnātia. Ko te uara x=8 kua ngata te whārite.
x=8
Ko te whārite \sqrt{16-2x}=2\sqrt{x-8} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}