Whakaoti mō x
x=9
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{16+x}\right)^{2}=\left(x-4\right)^{2}
Pūruatia ngā taha e rua o te whārite.
16+x=\left(x-4\right)^{2}
Tātaihia te \sqrt{16+x} mā te pū o 2, kia riro ko 16+x.
16+x=x^{2}-8x+16
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-4\right)^{2}.
16+x-x^{2}=-8x+16
Tangohia te x^{2} mai i ngā taha e rua.
16+x-x^{2}+8x=16
Me tāpiri te 8x ki ngā taha e rua.
16+9x-x^{2}=16
Pahekotia te x me 8x, ka 9x.
16+9x-x^{2}-16=0
Tangohia te 16 mai i ngā taha e rua.
9x-x^{2}=0
Tangohia te 16 i te 16, ka 0.
x\left(9-x\right)=0
Tauwehea te x.
x=0 x=9
Hei kimi otinga whārite, me whakaoti te x=0 me te 9-x=0.
\sqrt{16+0}=0-4
Whakakapia te 0 mō te x i te whārite \sqrt{16+x}=x-4.
4=-4
Whakarūnātia. Ko te uara x=0 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
\sqrt{16+9}=9-4
Whakakapia te 9 mō te x i te whārite \sqrt{16+x}=x-4.
5=5
Whakarūnātia. Ko te uara x=9 kua ngata te whārite.
x=9
Ko te whārite \sqrt{x+16}=x-4 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}