Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{15}\times 2\sqrt{5}\sqrt{24}
Tauwehea te 20=2^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 5} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{5}. Tuhia te pūtakerua o te 2^{2}.
\sqrt{15}\times 2\sqrt{5}\times 2\sqrt{6}
Tauwehea te 24=2^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 6} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{6}. Tuhia te pūtakerua o te 2^{2}.
\sqrt{15}\times 4\sqrt{5}\sqrt{6}
Whakareatia te 2 ki te 2, ka 4.
\sqrt{5}\sqrt{3}\times 4\sqrt{5}\sqrt{6}
Tauwehea te 15=5\times 3. Tuhia anō te pūtake rua o te hua \sqrt{5\times 3} hei hua o ngā pūtake rua \sqrt{5}\sqrt{3}.
5\times 4\sqrt{3}\sqrt{6}
Whakareatia te \sqrt{5} ki te \sqrt{5}, ka 5.
5\times 4\sqrt{3}\sqrt{3}\sqrt{2}
Tauwehea te 6=3\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3\times 2} hei hua o ngā pūtake rua \sqrt{3}\sqrt{2}.
5\times 4\times 3\sqrt{2}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
20\times 3\sqrt{2}
Whakareatia te 5 ki te 4, ka 20.
60\sqrt{2}
Whakareatia te 20 ki te 3, ka 60.