Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Tohaina

\frac{\sqrt{15}}{2\sqrt{3}}\sqrt{\frac{3}{2}}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
\frac{\sqrt{15}\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}\sqrt{\frac{3}{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{15}}{2\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\sqrt{15}\sqrt{3}}{2\times 3}\sqrt{\frac{3}{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\sqrt{3}\sqrt{5}\sqrt{3}}{2\times 3}\sqrt{\frac{3}{2}}
Tauwehea te 15=3\times 5. Tuhia anō te pūtake rua o te hua \sqrt{3\times 5} hei hua o ngā pūtake rua \sqrt{3}\sqrt{5}.
\frac{3\sqrt{5}}{2\times 3}\sqrt{\frac{3}{2}}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
\frac{3\sqrt{5}}{6}\sqrt{\frac{3}{2}}
Whakareatia te 2 ki te 3, ka 6.
\frac{1}{2}\sqrt{5}\sqrt{\frac{3}{2}}
Whakawehea te 3\sqrt{5} ki te 6, kia riro ko \frac{1}{2}\sqrt{5}.
\frac{1}{2}\sqrt{5}\times \frac{\sqrt{3}}{\sqrt{2}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{3}{2}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{3}}{\sqrt{2}}.
\frac{1}{2}\sqrt{5}\times \frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{3}}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{1}{2}\sqrt{5}\times \frac{\sqrt{3}\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{1}{2}\sqrt{5}\times \frac{\sqrt{6}}{2}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{6}}{2\times 2}\sqrt{5}
Me whakarea te \frac{1}{2} ki te \frac{\sqrt{6}}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\sqrt{6}}{4}\sqrt{5}
Whakareatia te 2 ki te 2, ka 4.
\frac{\sqrt{6}\sqrt{5}}{4}
Tuhia te \frac{\sqrt{6}}{4}\sqrt{5} hei hautanga kotahi.
\frac{\sqrt{30}}{4}
Hei whakarea \sqrt{6} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.