Whakaoti mō x
x=\sqrt{10}\approx 3.16227766
x=-\sqrt{10}\approx -3.16227766
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{15+x^{2}}=2+\sqrt{19-x^{2}}
Me tango -\sqrt{19-x^{2}} mai i ngā taha e rua o te whārite.
\left(\sqrt{15+x^{2}}\right)^{2}=\left(2+\sqrt{19-x^{2}}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
15+x^{2}=\left(2+\sqrt{19-x^{2}}\right)^{2}
Tātaihia te \sqrt{15+x^{2}} mā te pū o 2, kia riro ko 15+x^{2}.
15+x^{2}=4+4\sqrt{19-x^{2}}+\left(\sqrt{19-x^{2}}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2+\sqrt{19-x^{2}}\right)^{2}.
15+x^{2}=4+4\sqrt{19-x^{2}}+19-x^{2}
Tātaihia te \sqrt{19-x^{2}} mā te pū o 2, kia riro ko 19-x^{2}.
15+x^{2}=23+4\sqrt{19-x^{2}}-x^{2}
Tāpirihia te 4 ki te 19, ka 23.
15+x^{2}-\left(23-x^{2}\right)=4\sqrt{19-x^{2}}
Me tango 23-x^{2} mai i ngā taha e rua o te whārite.
15+x^{2}-23+x^{2}=4\sqrt{19-x^{2}}
Hei kimi i te tauaro o 23-x^{2}, kimihia te tauaro o ia taurangi.
-8+x^{2}+x^{2}=4\sqrt{19-x^{2}}
Tangohia te 23 i te 15, ka -8.
-8+2x^{2}=4\sqrt{19-x^{2}}
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
\left(-8+2x^{2}\right)^{2}=\left(4\sqrt{19-x^{2}}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
64-32x^{2}+4\left(x^{2}\right)^{2}=\left(4\sqrt{19-x^{2}}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-8+2x^{2}\right)^{2}.
64-32x^{2}+4x^{4}=\left(4\sqrt{19-x^{2}}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
64-32x^{2}+4x^{4}=4^{2}\left(\sqrt{19-x^{2}}\right)^{2}
Whakarohaina te \left(4\sqrt{19-x^{2}}\right)^{2}.
64-32x^{2}+4x^{4}=16\left(\sqrt{19-x^{2}}\right)^{2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
64-32x^{2}+4x^{4}=16\left(19-x^{2}\right)
Tātaihia te \sqrt{19-x^{2}} mā te pū o 2, kia riro ko 19-x^{2}.
64-32x^{2}+4x^{4}=304-16x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 16 ki te 19-x^{2}.
64-32x^{2}+4x^{4}-304=-16x^{2}
Tangohia te 304 mai i ngā taha e rua.
-240-32x^{2}+4x^{4}=-16x^{2}
Tangohia te 304 i te 64, ka -240.
-240-32x^{2}+4x^{4}+16x^{2}=0
Me tāpiri te 16x^{2} ki ngā taha e rua.
-240-16x^{2}+4x^{4}=0
Pahekotia te -32x^{2} me 16x^{2}, ka -16x^{2}.
4t^{2}-16t-240=0
Whakakapia te t mō te x^{2}.
t=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 4\left(-240\right)}}{2\times 4}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 4 mō te a, te -16 mō te b, me te -240 mō te c i te ture pūrua.
t=\frac{16±64}{8}
Mahia ngā tātaitai.
t=10 t=-6
Whakaotia te whārite t=\frac{16±64}{8} ina he tōrunga te ±, ina he tōraro te ±.
x=\sqrt{10} x=-\sqrt{10}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō t tōrunga.
\sqrt{15+\left(\sqrt{10}\right)^{2}}-\sqrt{19-\left(\sqrt{10}\right)^{2}}=2
Whakakapia te \sqrt{10} mō te x i te whārite \sqrt{15+x^{2}}-\sqrt{19-x^{2}}=2.
2=2
Whakarūnātia. Ko te uara x=\sqrt{10} kua ngata te whārite.
\sqrt{15+\left(-\sqrt{10}\right)^{2}}-\sqrt{19-\left(-\sqrt{10}\right)^{2}}=2
Whakakapia te -\sqrt{10} mō te x i te whārite \sqrt{15+x^{2}}-\sqrt{19-x^{2}}=2.
2=2
Whakarūnātia. Ko te uara x=-\sqrt{10} kua ngata te whārite.
x=\sqrt{10} x=-\sqrt{10}
Rārangihia ngā rongoā katoa o \sqrt{x^{2}+15}=\sqrt{19-x^{2}}+2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}