Aromātai
\frac{3\sqrt{14}}{2}\approx 5.61248608
Tohaina
Kua tāruatia ki te papatopenga
\frac{\sqrt{14}\sqrt{6}}{\left(\sqrt{6}\right)^{2}}\sqrt{\frac{27}{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{14}}{\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
\frac{\sqrt{14}\sqrt{6}}{6}\sqrt{\frac{27}{2}}
Ko te pūrua o \sqrt{6} ko 6.
\frac{\sqrt{84}}{6}\sqrt{\frac{27}{2}}
Hei whakarea \sqrt{14} me \sqrt{6}, whakareatia ngā tau i raro i te pūtake rua.
\frac{2\sqrt{21}}{6}\sqrt{\frac{27}{2}}
Tauwehea te 84=2^{2}\times 21. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 21} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{21}. Tuhia te pūtakerua o te 2^{2}.
\frac{1}{3}\sqrt{21}\sqrt{\frac{27}{2}}
Whakawehea te 2\sqrt{21} ki te 6, kia riro ko \frac{1}{3}\sqrt{21}.
\frac{1}{3}\sqrt{21}\times \frac{\sqrt{27}}{\sqrt{2}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{27}{2}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{27}}{\sqrt{2}}.
\frac{1}{3}\sqrt{21}\times \frac{3\sqrt{3}}{\sqrt{2}}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
\frac{1}{3}\sqrt{21}\times \frac{3\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{3\sqrt{3}}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{1}{3}\sqrt{21}\times \frac{3\sqrt{3}\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{1}{3}\sqrt{21}\times \frac{3\sqrt{6}}{2}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{3\sqrt{6}}{3\times 2}\sqrt{21}
Me whakarea te \frac{1}{3} ki te \frac{3\sqrt{6}}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\sqrt{6}}{2}\sqrt{21}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{\sqrt{6}\sqrt{21}}{2}
Tuhia te \frac{\sqrt{6}}{2}\sqrt{21} hei hautanga kotahi.
\frac{\sqrt{126}}{2}
Hei whakarea \sqrt{6} me \sqrt{21}, whakareatia ngā tau i raro i te pūtake rua.
\frac{3\sqrt{14}}{2}
Tauwehea te 126=3^{2}\times 14. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 14} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{14}. Tuhia te pūtakerua o te 3^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}