Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Tohaina

\frac{\sqrt{14}\sqrt{6}}{\left(\sqrt{6}\right)^{2}}\sqrt{\frac{27}{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{14}}{\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
\frac{\sqrt{14}\sqrt{6}}{6}\sqrt{\frac{27}{2}}
Ko te pūrua o \sqrt{6} ko 6.
\frac{\sqrt{84}}{6}\sqrt{\frac{27}{2}}
Hei whakarea \sqrt{14} me \sqrt{6}, whakareatia ngā tau i raro i te pūtake rua.
\frac{2\sqrt{21}}{6}\sqrt{\frac{27}{2}}
Tauwehea te 84=2^{2}\times 21. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 21} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{21}. Tuhia te pūtakerua o te 2^{2}.
\frac{1}{3}\sqrt{21}\sqrt{\frac{27}{2}}
Whakawehea te 2\sqrt{21} ki te 6, kia riro ko \frac{1}{3}\sqrt{21}.
\frac{1}{3}\sqrt{21}\times \frac{\sqrt{27}}{\sqrt{2}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{27}{2}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{27}}{\sqrt{2}}.
\frac{1}{3}\sqrt{21}\times \frac{3\sqrt{3}}{\sqrt{2}}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
\frac{1}{3}\sqrt{21}\times \frac{3\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{3\sqrt{3}}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{1}{3}\sqrt{21}\times \frac{3\sqrt{3}\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{1}{3}\sqrt{21}\times \frac{3\sqrt{6}}{2}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{3\sqrt{6}}{3\times 2}\sqrt{21}
Me whakarea te \frac{1}{3} ki te \frac{3\sqrt{6}}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\sqrt{6}}{2}\sqrt{21}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{\sqrt{6}\sqrt{21}}{2}
Tuhia te \frac{\sqrt{6}}{2}\sqrt{21} hei hautanga kotahi.
\frac{\sqrt{126}}{2}
Hei whakarea \sqrt{6} me \sqrt{21}, whakareatia ngā tau i raro i te pūtake rua.
\frac{3\sqrt{14}}{2}
Tauwehea te 126=3^{2}\times 14. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 14} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{14}. Tuhia te pūtakerua o te 3^{2}.