Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
2\sqrt{3}\left(3\sqrt{50}-\sqrt{162}\right)-\sqrt{18}\left(\sqrt{432}-\sqrt{192}\right)
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
2\sqrt{3}\left(3\times 5\sqrt{2}-\sqrt{162}\right)-\sqrt{18}\left(\sqrt{432}-\sqrt{192}\right)
Tauwehea te 50=5^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 2} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{2}. Tuhia te pūtakerua o te 5^{2}.
2\sqrt{3}\left(15\sqrt{2}-\sqrt{162}\right)-\sqrt{18}\left(\sqrt{432}-\sqrt{192}\right)
Whakareatia te 3 ki te 5, ka 15.
2\sqrt{3}\left(15\sqrt{2}-9\sqrt{2}\right)-\sqrt{18}\left(\sqrt{432}-\sqrt{192}\right)
Tauwehea te 162=9^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{9^{2}\times 2} hei hua o ngā pūtake rua \sqrt{9^{2}}\sqrt{2}. Tuhia te pūtakerua o te 9^{2}.
2\sqrt{3}\times 6\sqrt{2}-\sqrt{18}\left(\sqrt{432}-\sqrt{192}\right)
Pahekotia te 15\sqrt{2} me -9\sqrt{2}, ka 6\sqrt{2}.
12\sqrt{3}\sqrt{2}-\sqrt{18}\left(\sqrt{432}-\sqrt{192}\right)
Whakareatia te 2 ki te 6, ka 12.
12\sqrt{6}-\sqrt{18}\left(\sqrt{432}-\sqrt{192}\right)
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
12\sqrt{6}-3\sqrt{2}\left(\sqrt{432}-\sqrt{192}\right)
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
12\sqrt{6}-3\sqrt{2}\left(12\sqrt{3}-\sqrt{192}\right)
Tauwehea te 432=12^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{12^{2}\times 3} hei hua o ngā pūtake rua \sqrt{12^{2}}\sqrt{3}. Tuhia te pūtakerua o te 12^{2}.
12\sqrt{6}-3\sqrt{2}\left(12\sqrt{3}-8\sqrt{3}\right)
Tauwehea te 192=8^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{8^{2}\times 3} hei hua o ngā pūtake rua \sqrt{8^{2}}\sqrt{3}. Tuhia te pūtakerua o te 8^{2}.
12\sqrt{6}-3\sqrt{2}\times 4\sqrt{3}
Pahekotia te 12\sqrt{3} me -8\sqrt{3}, ka 4\sqrt{3}.
12\sqrt{6}-12\sqrt{2}\sqrt{3}
Whakareatia te 3 ki te 4, ka 12.
12\sqrt{6}-12\sqrt{6}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
0
Pahekotia te 12\sqrt{6} me -12\sqrt{6}, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}