Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Tohaina

\frac{2\sqrt{3}\times \frac{3}{4}}{3}\sqrt{2}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
\frac{\frac{2\times 3}{4}\sqrt{3}}{3}\sqrt{2}
Tuhia te 2\times \frac{3}{4} hei hautanga kotahi.
\frac{\frac{6}{4}\sqrt{3}}{3}\sqrt{2}
Whakareatia te 2 ki te 3, ka 6.
\frac{\frac{3}{2}\sqrt{3}}{3}\sqrt{2}
Whakahekea te hautanga \frac{6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1}{2}\sqrt{3}\sqrt{2}
Whakawehea te \frac{3}{2}\sqrt{3} ki te 3, kia riro ko \frac{1}{2}\sqrt{3}.
\frac{1}{2}\sqrt{6}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.