Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\sqrt{3}+3\sqrt{\frac{1}{3}}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
2\sqrt{3}+3\times \frac{\sqrt{1}}{\sqrt{3}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{3}}.
2\sqrt{3}+3\times \frac{1}{\sqrt{3}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
2\sqrt{3}+3\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
2\sqrt{3}+3\times \frac{\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
2\sqrt{3}+\sqrt{3}
Me whakakore te 3 me te 3.
3\sqrt{3}
Pahekotia te 2\sqrt{3} me \sqrt{3}, ka 3\sqrt{3}.