Whakaoti mō x
x=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{10-3x}\right)^{2}=\left(2+\sqrt{x+6}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
10-3x=\left(2+\sqrt{x+6}\right)^{2}
Tātaihia te \sqrt{10-3x} mā te pū o 2, kia riro ko 10-3x.
10-3x=4+4\sqrt{x+6}+\left(\sqrt{x+6}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2+\sqrt{x+6}\right)^{2}.
10-3x=4+4\sqrt{x+6}+x+6
Tātaihia te \sqrt{x+6} mā te pū o 2, kia riro ko x+6.
10-3x=10+4\sqrt{x+6}+x
Tāpirihia te 4 ki te 6, ka 10.
10-3x-\left(10+x\right)=4\sqrt{x+6}
Me tango 10+x mai i ngā taha e rua o te whārite.
10-3x-10-x=4\sqrt{x+6}
Hei kimi i te tauaro o 10+x, kimihia te tauaro o ia taurangi.
-3x-x=4\sqrt{x+6}
Tangohia te 10 i te 10, ka 0.
-4x=4\sqrt{x+6}
Pahekotia te -3x me -x, ka -4x.
\left(-4x\right)^{2}=\left(4\sqrt{x+6}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(-4\right)^{2}x^{2}=\left(4\sqrt{x+6}\right)^{2}
Whakarohaina te \left(-4x\right)^{2}.
16x^{2}=\left(4\sqrt{x+6}\right)^{2}
Tātaihia te -4 mā te pū o 2, kia riro ko 16.
16x^{2}=4^{2}\left(\sqrt{x+6}\right)^{2}
Whakarohaina te \left(4\sqrt{x+6}\right)^{2}.
16x^{2}=16\left(\sqrt{x+6}\right)^{2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
16x^{2}=16\left(x+6\right)
Tātaihia te \sqrt{x+6} mā te pū o 2, kia riro ko x+6.
16x^{2}=16x+96
Whakamahia te āhuatanga tohatoha hei whakarea te 16 ki te x+6.
16x^{2}-16x=96
Tangohia te 16x mai i ngā taha e rua.
16x^{2}-16x-96=0
Tangohia te 96 mai i ngā taha e rua.
x^{2}-x-6=0
Whakawehea ngā taha e rua ki te 16.
a+b=-1 ab=1\left(-6\right)=-6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-6 2,-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
1-6=-5 2-3=-1
Tātaihia te tapeke mō ia takirua.
a=-3 b=2
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(x^{2}-3x\right)+\left(2x-6\right)
Tuhia anō te x^{2}-x-6 hei \left(x^{2}-3x\right)+\left(2x-6\right).
x\left(x-3\right)+2\left(x-3\right)
Tauwehea te x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-3\right)\left(x+2\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=-2
Hei kimi otinga whārite, me whakaoti te x-3=0 me te x+2=0.
\sqrt{10-3\times 3}=2+\sqrt{3+6}
Whakakapia te 3 mō te x i te whārite \sqrt{10-3x}=2+\sqrt{x+6}.
1=5
Whakarūnātia. Ko te uara x=3 kāore e ngata ana ki te whārite.
\sqrt{10-3\left(-2\right)}=2+\sqrt{-2+6}
Whakakapia te -2 mō te x i te whārite \sqrt{10-3x}=2+\sqrt{x+6}.
4=4
Whakarūnātia. Ko te uara x=-2 kua ngata te whārite.
x=-2
Ko te whārite \sqrt{10-3x}=\sqrt{x+6}+2 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}