Aromātai
20\sqrt{5}\approx 44.72135955
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\sqrt{5}\sqrt{2}\sqrt{5}}{\frac{1}{\sqrt{10}}}
Tauwehea te 10=5\times 2. Tuhia anō te pūtake rua o te hua \sqrt{5\times 2} hei hua o ngā pūtake rua \sqrt{5}\sqrt{2}.
\frac{2\times 5\sqrt{2}}{\frac{1}{\sqrt{10}}}
Whakareatia te \sqrt{5} ki te \sqrt{5}, ka 5.
\frac{10\sqrt{2}}{\frac{1}{\sqrt{10}}}
Whakareatia te 2 ki te 5, ka 10.
\frac{10\sqrt{2}}{\frac{\sqrt{10}}{\left(\sqrt{10}\right)^{2}}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{10}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{10}.
\frac{10\sqrt{2}}{\frac{\sqrt{10}}{10}}
Ko te pūrua o \sqrt{10} ko 10.
\frac{10\sqrt{2}\times 10}{\sqrt{10}}
Whakawehe 10\sqrt{2} ki te \frac{\sqrt{10}}{10} mā te whakarea 10\sqrt{2} ki te tau huripoki o \frac{\sqrt{10}}{10}.
\frac{10\sqrt{2}\times 10\sqrt{10}}{\left(\sqrt{10}\right)^{2}}
Whakangāwaritia te tauraro o \frac{10\sqrt{2}\times 10}{\sqrt{10}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{10}.
\frac{10\sqrt{2}\times 10\sqrt{10}}{10}
Ko te pūrua o \sqrt{10} ko 10.
\frac{100\sqrt{2}\sqrt{10}}{10}
Whakareatia te 10 ki te 10, ka 100.
\frac{100\sqrt{2}\sqrt{2}\sqrt{5}}{10}
Tauwehea te 10=2\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2\times 5} hei hua o ngā pūtake rua \sqrt{2}\sqrt{5}.
\frac{100\times 2\sqrt{5}}{10}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{200\sqrt{5}}{10}
Whakareatia te 100 ki te 2, ka 200.
20\sqrt{5}
Whakawehea te 200\sqrt{5} ki te 10, kia riro ko 20\sqrt{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}