Whakaoti mō n
n=-1
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{1-n-\left(-2\right)}=2
Hei kimi i te tauaro o n-2, kimihia te tauaro o ia taurangi.
\sqrt{1-n+2}=2
Ko te tauaro o -2 ko 2.
\sqrt{3-n}=2
Tāpirihia te 1 ki te 2, ka 3.
-n+3=4
Pūruatia ngā taha e rua o te whārite.
-n+3-3=4-3
Me tango 3 mai i ngā taha e rua o te whārite.
-n=4-3
Mā te tango i te 3 i a ia ake anō ka toe ko te 0.
-n=1
Tango 3 mai i 4.
\frac{-n}{-1}=\frac{1}{-1}
Whakawehea ngā taha e rua ki te -1.
n=\frac{1}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
n=-1
Whakawehe 1 ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}