Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{1-\frac{\left(3\sqrt{7}\right)^{2}}{14^{2}}}
Kia whakarewa i te \frac{3\sqrt{7}}{14} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\sqrt{1-\frac{3^{2}\left(\sqrt{7}\right)^{2}}{14^{2}}}
Whakarohaina te \left(3\sqrt{7}\right)^{2}.
\sqrt{1-\frac{9\left(\sqrt{7}\right)^{2}}{14^{2}}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\sqrt{1-\frac{9\times 7}{14^{2}}}
Ko te pūrua o \sqrt{7} ko 7.
\sqrt{1-\frac{63}{14^{2}}}
Whakareatia te 9 ki te 7, ka 63.
\sqrt{1-\frac{63}{196}}
Tātaihia te 14 mā te pū o 2, kia riro ko 196.
\sqrt{1-\frac{9}{28}}
Whakahekea te hautanga \frac{63}{196} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
\sqrt{\frac{19}{28}}
Tangohia te \frac{9}{28} i te 1, ka \frac{19}{28}.
\frac{\sqrt{19}}{\sqrt{28}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{19}{28}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{19}}{\sqrt{28}}.
\frac{\sqrt{19}}{2\sqrt{7}}
Tauwehea te 28=2^{2}\times 7. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 7} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{7}. Tuhia te pūtakerua o te 2^{2}.
\frac{\sqrt{19}\sqrt{7}}{2\left(\sqrt{7}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{19}}{2\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}.
\frac{\sqrt{19}\sqrt{7}}{2\times 7}
Ko te pūrua o \sqrt{7} ko 7.
\frac{\sqrt{133}}{2\times 7}
Hei whakarea \sqrt{19} me \sqrt{7}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{133}}{14}
Whakareatia te 2 ki te 7, ka 14.