Aromātai
\frac{\sqrt{133}}{14}\approx 0.823754471
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\sqrt { 1 - ( \frac { 3 \sqrt { 7 } } { 14 } ) ^ { 2 } }
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{1-\frac{\left(3\sqrt{7}\right)^{2}}{14^{2}}}
Kia whakarewa i te \frac{3\sqrt{7}}{14} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\sqrt{1-\frac{3^{2}\left(\sqrt{7}\right)^{2}}{14^{2}}}
Whakarohaina te \left(3\sqrt{7}\right)^{2}.
\sqrt{1-\frac{9\left(\sqrt{7}\right)^{2}}{14^{2}}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\sqrt{1-\frac{9\times 7}{14^{2}}}
Ko te pūrua o \sqrt{7} ko 7.
\sqrt{1-\frac{63}{14^{2}}}
Whakareatia te 9 ki te 7, ka 63.
\sqrt{1-\frac{63}{196}}
Tātaihia te 14 mā te pū o 2, kia riro ko 196.
\sqrt{1-\frac{9}{28}}
Whakahekea te hautanga \frac{63}{196} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
\sqrt{\frac{19}{28}}
Tangohia te \frac{9}{28} i te 1, ka \frac{19}{28}.
\frac{\sqrt{19}}{\sqrt{28}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{19}{28}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{19}}{\sqrt{28}}.
\frac{\sqrt{19}}{2\sqrt{7}}
Tauwehea te 28=2^{2}\times 7. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 7} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{7}. Tuhia te pūtakerua o te 2^{2}.
\frac{\sqrt{19}\sqrt{7}}{2\left(\sqrt{7}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{19}}{2\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}.
\frac{\sqrt{19}\sqrt{7}}{2\times 7}
Ko te pūrua o \sqrt{7} ko 7.
\frac{\sqrt{133}}{2\times 7}
Hei whakarea \sqrt{19} me \sqrt{7}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{133}}{14}
Whakareatia te 2 ki te 7, ka 14.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}