Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\frac{48}{48}-\frac{11}{48}}
Me tahuri te 1 ki te hautau \frac{48}{48}.
\sqrt{\frac{48-11}{48}}
Tā te mea he rite te tauraro o \frac{48}{48} me \frac{11}{48}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{\frac{37}{48}}
Tangohia te 11 i te 48, ka 37.
\frac{\sqrt{37}}{\sqrt{48}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{37}{48}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{37}}{\sqrt{48}}.
\frac{\sqrt{37}}{4\sqrt{3}}
Tauwehea te 48=4^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 3} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{3}. Tuhia te pūtakerua o te 4^{2}.
\frac{\sqrt{37}\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{37}}{4\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\sqrt{37}\sqrt{3}}{4\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\sqrt{111}}{4\times 3}
Hei whakarea \sqrt{37} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{111}}{12}
Whakareatia te 4 ki te 3, ka 12.