Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\frac{16+9}{16}}-\sqrt{144}+\sqrt{49}
Whakareatia te 1 ki te 16, ka 16.
\sqrt{\frac{25}{16}}-\sqrt{144}+\sqrt{49}
Tāpirihia te 16 ki te 9, ka 25.
\frac{5}{4}-\sqrt{144}+\sqrt{49}
Tuhia anō te pūtake rua o te whakawehenga \frac{25}{16} hei whakawehenga o ngā pūtake rua \frac{\sqrt{25}}{\sqrt{16}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{5}{4}-12+\sqrt{49}
Tātaitia te pūtakerua o 144 kia tae ki 12.
\frac{5}{4}-\frac{48}{4}+\sqrt{49}
Me tahuri te 12 ki te hautau \frac{48}{4}.
\frac{5-48}{4}+\sqrt{49}
Tā te mea he rite te tauraro o \frac{5}{4} me \frac{48}{4}, me tango rāua mā te tango i ō raua taurunga.
-\frac{43}{4}+\sqrt{49}
Tangohia te 48 i te 5, ka -43.
-\frac{43}{4}+7
Tātaitia te pūtakerua o 49 kia tae ki 7.
-\frac{43}{4}+\frac{28}{4}
Me tahuri te 7 ki te hautau \frac{28}{4}.
\frac{-43+28}{4}
Tā te mea he rite te tauraro o -\frac{43}{4} me \frac{28}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{15}{4}
Tāpirihia te -43 ki te 28, ka -15.