Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Tohaina

\sqrt{\frac{4+5}{4}}+\frac{2\times 3+2}{3}\times \left(\frac{1\times 2+1}{2}\right)^{2}-\frac{3}{\frac{1\times 5+1}{5}}
Whakareatia te 1 ki te 4, ka 4.
\sqrt{\frac{9}{4}}+\frac{2\times 3+2}{3}\times \left(\frac{1\times 2+1}{2}\right)^{2}-\frac{3}{\frac{1\times 5+1}{5}}
Tāpirihia te 4 ki te 5, ka 9.
\frac{3}{2}+\frac{2\times 3+2}{3}\times \left(\frac{1\times 2+1}{2}\right)^{2}-\frac{3}{\frac{1\times 5+1}{5}}
Tuhia anō te pūtake rua o te whakawehenga \frac{9}{4} hei whakawehenga o ngā pūtake rua \frac{\sqrt{9}}{\sqrt{4}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{3}{2}+\frac{6+2}{3}\times \left(\frac{1\times 2+1}{2}\right)^{2}-\frac{3}{\frac{1\times 5+1}{5}}
Whakareatia te 2 ki te 3, ka 6.
\frac{3}{2}+\frac{8}{3}\times \left(\frac{1\times 2+1}{2}\right)^{2}-\frac{3}{\frac{1\times 5+1}{5}}
Tāpirihia te 6 ki te 2, ka 8.
\frac{3}{2}+\frac{8}{3}\times \left(\frac{2+1}{2}\right)^{2}-\frac{3}{\frac{1\times 5+1}{5}}
Whakareatia te 1 ki te 2, ka 2.
\frac{3}{2}+\frac{8}{3}\times \left(\frac{3}{2}\right)^{2}-\frac{3}{\frac{1\times 5+1}{5}}
Tāpirihia te 2 ki te 1, ka 3.
\frac{3}{2}+\frac{8}{3}\times \frac{9}{4}-\frac{3}{\frac{1\times 5+1}{5}}
Tātaihia te \frac{3}{2} mā te pū o 2, kia riro ko \frac{9}{4}.
\frac{3}{2}+6-\frac{3}{\frac{1\times 5+1}{5}}
Whakareatia te \frac{8}{3} ki te \frac{9}{4}, ka 6.
\frac{15}{2}-\frac{3}{\frac{1\times 5+1}{5}}
Tāpirihia te \frac{3}{2} ki te 6, ka \frac{15}{2}.
\frac{15}{2}-\frac{3\times 5}{1\times 5+1}
Whakawehe 3 ki te \frac{1\times 5+1}{5} mā te whakarea 3 ki te tau huripoki o \frac{1\times 5+1}{5}.
\frac{15}{2}-\frac{15}{1\times 5+1}
Whakareatia te 3 ki te 5, ka 15.
\frac{15}{2}-\frac{15}{5+1}
Whakareatia te 1 ki te 5, ka 5.
\frac{15}{2}-\frac{15}{6}
Tāpirihia te 5 ki te 1, ka 6.
\frac{15}{2}-\frac{5}{2}
Whakahekea te hautanga \frac{15}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
5
Tangohia te \frac{5}{2} i te \frac{15}{2}, ka 5.