Aromātai
\sqrt{41}-31.8\approx -25.396875763
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{25+11}{25}}+3\sqrt{\frac{41}{9}}-0.6\sqrt{3025}
Whakareatia te 1 ki te 25, ka 25.
\sqrt{\frac{36}{25}}+3\sqrt{\frac{41}{9}}-0.6\sqrt{3025}
Tāpirihia te 25 ki te 11, ka 36.
\frac{6}{5}+3\sqrt{\frac{41}{9}}-0.6\sqrt{3025}
Tuhia anō te pūtake rua o te whakawehenga \frac{36}{25} hei whakawehenga o ngā pūtake rua \frac{\sqrt{36}}{\sqrt{25}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{6}{5}+3\times \frac{\sqrt{41}}{\sqrt{9}}-0.6\sqrt{3025}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{41}{9}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{41}}{\sqrt{9}}.
\frac{6}{5}+3\times \frac{\sqrt{41}}{3}-0.6\sqrt{3025}
Tātaitia te pūtakerua o 9 kia tae ki 3.
\frac{6}{5}+\sqrt{41}-0.6\sqrt{3025}
Me whakakore te 3 me te 3.
\frac{6}{5}+\sqrt{41}-0.6\times 55
Tātaitia te pūtakerua o 3025 kia tae ki 55.
\frac{6}{5}+\sqrt{41}-33
Whakareatia te -0.6 ki te 55, ka -33.
\frac{6}{5}+\sqrt{41}-\frac{165}{5}
Me tahuri te 33 ki te hautau \frac{165}{5}.
\frac{6-165}{5}+\sqrt{41}
Tā te mea he rite te tauraro o \frac{6}{5} me \frac{165}{5}, me tango rāua mā te tango i ō raua taurunga.
-\frac{159}{5}+\sqrt{41}
Tangohia te 165 i te 6, ka -159.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}