Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\frac{25+11}{25}}+3\sqrt{\frac{11}{9}}-0.6\sqrt{3025}
Whakareatia te 1 ki te 25, ka 25.
\sqrt{\frac{36}{25}}+3\sqrt{\frac{11}{9}}-0.6\sqrt{3025}
Tāpirihia te 25 ki te 11, ka 36.
\frac{6}{5}+3\sqrt{\frac{11}{9}}-0.6\sqrt{3025}
Tuhia anō te pūtake rua o te whakawehenga \frac{36}{25} hei whakawehenga o ngā pūtake rua \frac{\sqrt{36}}{\sqrt{25}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{6}{5}+3\times \frac{\sqrt{11}}{\sqrt{9}}-0.6\sqrt{3025}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{11}{9}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{11}}{\sqrt{9}}.
\frac{6}{5}+3\times \frac{\sqrt{11}}{3}-0.6\sqrt{3025}
Tātaitia te pūtakerua o 9 kia tae ki 3.
\frac{6}{5}+\sqrt{11}-0.6\sqrt{3025}
Me whakakore te 3 me te 3.
\frac{6}{5}+\sqrt{11}-0.6\times 55
Tātaitia te pūtakerua o 3025 kia tae ki 55.
\frac{6}{5}+\sqrt{11}-33
Whakareatia te -0.6 ki te 55, ka -33.
\frac{6}{5}+\sqrt{11}-\frac{165}{5}
Me tahuri te 33 ki te hautau \frac{165}{5}.
\frac{6-165}{5}+\sqrt{11}
Tā te mea he rite te tauraro o \frac{6}{5} me \frac{165}{5}, me tango rāua mā te tango i ō raua taurunga.
-\frac{159}{5}+\sqrt{11}
Tangohia te 165 i te 6, ka -159.