Whakaoti mō M (complex solution)
M\in \mathrm{C}
Whakaoti mō M
M\in \mathrm{R}
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{0}\left(5-0\times 4\right)^{2}=M\left(5\sqrt{0\times 2}-0\times 4\right)^{2}
Whakareatia te 0 ki te 2, ka 0.
0\left(5-0\times 4\right)^{2}=M\left(5\sqrt{0\times 2}-0\times 4\right)^{2}
Tātaitia te pūtakerua o 0 kia tae ki 0.
0\left(5-0\right)^{2}=M\left(5\sqrt{0\times 2}-0\times 4\right)^{2}
Whakareatia te 0 ki te 4, ka 0.
0\times 5^{2}=M\left(5\sqrt{0\times 2}-0\times 4\right)^{2}
Tangohia te 0 i te 5, ka 5.
0\times 25=M\left(5\sqrt{0\times 2}-0\times 4\right)^{2}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
0=M\left(5\sqrt{0\times 2}-0\times 4\right)^{2}
Whakareatia te 0 ki te 25, ka 0.
0=M\left(5\sqrt{0}-0\times 4\right)^{2}
Whakareatia te 0 ki te 2, ka 0.
0=M\left(5\times 0-0\times 4\right)^{2}
Tātaitia te pūtakerua o 0 kia tae ki 0.
0=M\left(0-0\times 4\right)^{2}
Whakareatia te 5 ki te 0, ka 0.
0=M\left(0-0\right)^{2}
Whakareatia te 0 ki te 4, ka 0.
0=M\times 0^{2}
Mā te tango i te 0 i a ia ake anō ka toe ko te 0.
0=M\times 0
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
0=0
Ko te tau i whakarea ki te kore ka hua ko te kore.
\text{true}
Whakatauritea te 0 me te 0.
M\in \mathrm{C}
He pono tēnei mō tētahi M ahakoa.
\sqrt{0}\left(5-0\times 4\right)^{2}=M\left(5\sqrt{0\times 2}-0\times 4\right)^{2}
Whakareatia te 0 ki te 2, ka 0.
0\left(5-0\times 4\right)^{2}=M\left(5\sqrt{0\times 2}-0\times 4\right)^{2}
Tātaitia te pūtakerua o 0 kia tae ki 0.
0\left(5-0\right)^{2}=M\left(5\sqrt{0\times 2}-0\times 4\right)^{2}
Whakareatia te 0 ki te 4, ka 0.
0\times 5^{2}=M\left(5\sqrt{0\times 2}-0\times 4\right)^{2}
Tangohia te 0 i te 5, ka 5.
0\times 25=M\left(5\sqrt{0\times 2}-0\times 4\right)^{2}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
0=M\left(5\sqrt{0\times 2}-0\times 4\right)^{2}
Whakareatia te 0 ki te 25, ka 0.
0=M\left(5\sqrt{0}-0\times 4\right)^{2}
Whakareatia te 0 ki te 2, ka 0.
0=M\left(5\times 0-0\times 4\right)^{2}
Tātaitia te pūtakerua o 0 kia tae ki 0.
0=M\left(0-0\times 4\right)^{2}
Whakareatia te 5 ki te 0, ka 0.
0=M\left(0-0\right)^{2}
Whakareatia te 0 ki te 4, ka 0.
0=M\times 0^{2}
Mā te tango i te 0 i a ia ake anō ka toe ko te 0.
0=M\times 0
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
0=0
Ko te tau i whakarea ki te kore ka hua ko te kore.
\text{true}
Whakatauritea te 0 me te 0.
M\in \mathrm{R}
He pono tēnei mō tētahi M ahakoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}