\sqrt { 0.1 ( - 31 \% ) ^ { 2 } + 0.3 ( - 11 \% ) ^ { 2 } + 0.4 ( 4 \% ) ^ { 2 } + 0.2 ( 24 \% ) ^ { 2 } }
Aromātai
\frac{\sqrt{254}}{100}\approx 0.159373775
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{0.1\times \frac{961}{10000}+0.3\left(-\frac{11}{100}\right)^{2}+0.4\times \left(\frac{4}{100}\right)^{2}+0.2\times \left(\frac{24}{100}\right)^{2}}
Tātaihia te -\frac{31}{100} mā te pū o 2, kia riro ko \frac{961}{10000}.
\sqrt{\frac{961}{100000}+0.3\left(-\frac{11}{100}\right)^{2}+0.4\times \left(\frac{4}{100}\right)^{2}+0.2\times \left(\frac{24}{100}\right)^{2}}
Whakareatia te 0.1 ki te \frac{961}{10000}, ka \frac{961}{100000}.
\sqrt{\frac{961}{100000}+0.3\times \frac{121}{10000}+0.4\times \left(\frac{4}{100}\right)^{2}+0.2\times \left(\frac{24}{100}\right)^{2}}
Tātaihia te -\frac{11}{100} mā te pū o 2, kia riro ko \frac{121}{10000}.
\sqrt{\frac{961}{100000}+\frac{363}{100000}+0.4\times \left(\frac{4}{100}\right)^{2}+0.2\times \left(\frac{24}{100}\right)^{2}}
Whakareatia te 0.3 ki te \frac{121}{10000}, ka \frac{363}{100000}.
\sqrt{\frac{331}{25000}+0.4\times \left(\frac{4}{100}\right)^{2}+0.2\times \left(\frac{24}{100}\right)^{2}}
Tāpirihia te \frac{961}{100000} ki te \frac{363}{100000}, ka \frac{331}{25000}.
\sqrt{\frac{331}{25000}+0.4\times \left(\frac{1}{25}\right)^{2}+0.2\times \left(\frac{24}{100}\right)^{2}}
Whakahekea te hautanga \frac{4}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\sqrt{\frac{331}{25000}+0.4\times \frac{1}{625}+0.2\times \left(\frac{24}{100}\right)^{2}}
Tātaihia te \frac{1}{25} mā te pū o 2, kia riro ko \frac{1}{625}.
\sqrt{\frac{331}{25000}+\frac{2}{3125}+0.2\times \left(\frac{24}{100}\right)^{2}}
Whakareatia te 0.4 ki te \frac{1}{625}, ka \frac{2}{3125}.
\sqrt{\frac{347}{25000}+0.2\times \left(\frac{24}{100}\right)^{2}}
Tāpirihia te \frac{331}{25000} ki te \frac{2}{3125}, ka \frac{347}{25000}.
\sqrt{\frac{347}{25000}+0.2\times \left(\frac{6}{25}\right)^{2}}
Whakahekea te hautanga \frac{24}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\sqrt{\frac{347}{25000}+0.2\times \frac{36}{625}}
Tātaihia te \frac{6}{25} mā te pū o 2, kia riro ko \frac{36}{625}.
\sqrt{\frac{347}{25000}+\frac{36}{3125}}
Whakareatia te 0.2 ki te \frac{36}{625}, ka \frac{36}{3125}.
\sqrt{\frac{127}{5000}}
Tāpirihia te \frac{347}{25000} ki te \frac{36}{3125}, ka \frac{127}{5000}.
\frac{\sqrt{127}}{\sqrt{5000}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{127}{5000}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{127}}{\sqrt{5000}}.
\frac{\sqrt{127}}{50\sqrt{2}}
Tauwehea te 5000=50^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{50^{2}\times 2} hei hua o ngā pūtake rua \sqrt{50^{2}}\sqrt{2}. Tuhia te pūtakerua o te 50^{2}.
\frac{\sqrt{127}\sqrt{2}}{50\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{127}}{50\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\sqrt{127}\sqrt{2}}{50\times 2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\sqrt{254}}{50\times 2}
Hei whakarea \sqrt{127} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{254}}{100}
Whakareatia te 50 ki te 2, ka 100.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}