\sqrt { 0.1 ( - 14.5 \% ) ^ { 2 } + 0.3 ( - 2.5 \% ) ^ { 2 } + 0.4 ( 2.5 \% ) ^ { 2 } + 0.2 ( 5.5 \% ) ^ { 2 } }
Aromātai
\frac{\sqrt{3145}}{1000}\approx 0.0560803
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{0.1\left(-\frac{145}{1000}\right)^{2}+0.3\left(-\frac{2.5}{100}\right)^{2}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Whakarohaina te \frac{14.5}{100} mā te whakarea i te taurunga me te tauraro ki te 10.
\sqrt{0.1\left(-\frac{29}{200}\right)^{2}+0.3\left(-\frac{2.5}{100}\right)^{2}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Whakahekea te hautanga \frac{145}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\sqrt{0.1\times \frac{841}{40000}+0.3\left(-\frac{2.5}{100}\right)^{2}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Tātaihia te -\frac{29}{200} mā te pū o 2, kia riro ko \frac{841}{40000}.
\sqrt{\frac{841}{400000}+0.3\left(-\frac{2.5}{100}\right)^{2}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Whakareatia te 0.1 ki te \frac{841}{40000}, ka \frac{841}{400000}.
\sqrt{\frac{841}{400000}+0.3\left(-\frac{25}{1000}\right)^{2}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Whakarohaina te \frac{2.5}{100} mā te whakarea i te taurunga me te tauraro ki te 10.
\sqrt{\frac{841}{400000}+0.3\left(-\frac{1}{40}\right)^{2}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Whakahekea te hautanga \frac{25}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\sqrt{\frac{841}{400000}+0.3\times \frac{1}{1600}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Tātaihia te -\frac{1}{40} mā te pū o 2, kia riro ko \frac{1}{1600}.
\sqrt{\frac{841}{400000}+\frac{3}{16000}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Whakareatia te 0.3 ki te \frac{1}{1600}, ka \frac{3}{16000}.
\sqrt{\frac{229}{100000}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Tāpirihia te \frac{841}{400000} ki te \frac{3}{16000}, ka \frac{229}{100000}.
\sqrt{\frac{229}{100000}+0.4\times \left(\frac{25}{1000}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Whakarohaina te \frac{2.5}{100} mā te whakarea i te taurunga me te tauraro ki te 10.
\sqrt{\frac{229}{100000}+0.4\times \left(\frac{1}{40}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Whakahekea te hautanga \frac{25}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\sqrt{\frac{229}{100000}+0.4\times \frac{1}{1600}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Tātaihia te \frac{1}{40} mā te pū o 2, kia riro ko \frac{1}{1600}.
\sqrt{\frac{229}{100000}+\frac{1}{4000}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Whakareatia te 0.4 ki te \frac{1}{1600}, ka \frac{1}{4000}.
\sqrt{\frac{127}{50000}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Tāpirihia te \frac{229}{100000} ki te \frac{1}{4000}, ka \frac{127}{50000}.
\sqrt{\frac{127}{50000}+0.2\times \left(\frac{55}{1000}\right)^{2}}
Whakarohaina te \frac{5.5}{100} mā te whakarea i te taurunga me te tauraro ki te 10.
\sqrt{\frac{127}{50000}+0.2\times \left(\frac{11}{200}\right)^{2}}
Whakahekea te hautanga \frac{55}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\sqrt{\frac{127}{50000}+0.2\times \frac{121}{40000}}
Tātaihia te \frac{11}{200} mā te pū o 2, kia riro ko \frac{121}{40000}.
\sqrt{\frac{127}{50000}+\frac{121}{200000}}
Whakareatia te 0.2 ki te \frac{121}{40000}, ka \frac{121}{200000}.
\sqrt{\frac{629}{200000}}
Tāpirihia te \frac{127}{50000} ki te \frac{121}{200000}, ka \frac{629}{200000}.
\frac{\sqrt{629}}{\sqrt{200000}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{629}{200000}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{629}}{\sqrt{200000}}.
\frac{\sqrt{629}}{200\sqrt{5}}
Tauwehea te 200000=200^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{200^{2}\times 5} hei hua o ngā pūtake rua \sqrt{200^{2}}\sqrt{5}. Tuhia te pūtakerua o te 200^{2}.
\frac{\sqrt{629}\sqrt{5}}{200\left(\sqrt{5}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{629}}{200\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{\sqrt{629}\sqrt{5}}{200\times 5}
Ko te pūrua o \sqrt{5} ko 5.
\frac{\sqrt{3145}}{200\times 5}
Hei whakarea \sqrt{629} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{3145}}{1000}
Whakareatia te 200 ki te 5, ka 1000.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}