Whakaoti mō x
x=3
Graph
Pātaitai
Algebra
\sqrt { - x + 12 } = x
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{-x+12}\right)^{2}=x^{2}
Pūruatia ngā taha e rua o te whārite.
-x+12=x^{2}
Tātaihia te \sqrt{-x+12} mā te pū o 2, kia riro ko -x+12.
-x+12-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}-x+12=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-1 ab=-12=-12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-12 2,-6 3,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
1-12=-11 2-6=-4 3-4=-1
Tātaihia te tapeke mō ia takirua.
a=3 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(-x^{2}+3x\right)+\left(-4x+12\right)
Tuhia anō te -x^{2}-x+12 hei \left(-x^{2}+3x\right)+\left(-4x+12\right).
x\left(-x+3\right)+4\left(-x+3\right)
Tauwehea te x i te tuatahi me te 4 i te rōpū tuarua.
\left(-x+3\right)\left(x+4\right)
Whakatauwehea atu te kīanga pātahi -x+3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=-4
Hei kimi otinga whārite, me whakaoti te -x+3=0 me te x+4=0.
\sqrt{-3+12}=3
Whakakapia te 3 mō te x i te whārite \sqrt{-x+12}=x.
3=3
Whakarūnātia. Ko te uara x=3 kua ngata te whārite.
\sqrt{-\left(-4\right)+12}=-4
Whakakapia te -4 mō te x i te whārite \sqrt{-x+12}=x.
4=-4
Whakarūnātia. Ko te uara x=-4 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=3
Ko te whārite \sqrt{12-x}=x he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}