Whakaoti mō z
z=-13
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{-6z+3}=-4-z
Me tango z mai i ngā taha e rua o te whārite.
\left(\sqrt{-6z+3}\right)^{2}=\left(-4-z\right)^{2}
Pūruatia ngā taha e rua o te whārite.
-6z+3=\left(-4-z\right)^{2}
Tātaihia te \sqrt{-6z+3} mā te pū o 2, kia riro ko -6z+3.
-6z+3=16+8z+z^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-4-z\right)^{2}.
-6z+3-16=8z+z^{2}
Tangohia te 16 mai i ngā taha e rua.
-6z-13=8z+z^{2}
Tangohia te 16 i te 3, ka -13.
-6z-13-8z=z^{2}
Tangohia te 8z mai i ngā taha e rua.
-14z-13=z^{2}
Pahekotia te -6z me -8z, ka -14z.
-14z-13-z^{2}=0
Tangohia te z^{2} mai i ngā taha e rua.
-z^{2}-14z-13=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-14 ab=-\left(-13\right)=13
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -z^{2}+az+bz-13. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=-13
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-z^{2}-z\right)+\left(-13z-13\right)
Tuhia anō te -z^{2}-14z-13 hei \left(-z^{2}-z\right)+\left(-13z-13\right).
z\left(-z-1\right)+13\left(-z-1\right)
Tauwehea te z i te tuatahi me te 13 i te rōpū tuarua.
\left(-z-1\right)\left(z+13\right)
Whakatauwehea atu te kīanga pātahi -z-1 mā te whakamahi i te āhuatanga tātai tohatoha.
z=-1 z=-13
Hei kimi otinga whārite, me whakaoti te -z-1=0 me te z+13=0.
\sqrt{-6\left(-1\right)+3}-1=-4
Whakakapia te -1 mō te z i te whārite \sqrt{-6z+3}+z=-4.
2=-4
Whakarūnātia. Ko te uara z=-1 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
\sqrt{-6\left(-13\right)+3}-13=-4
Whakakapia te -13 mō te z i te whārite \sqrt{-6z+3}+z=-4.
-4=-4
Whakarūnātia. Ko te uara z=-13 kua ngata te whārite.
z=-13
Ko te whārite \sqrt{3-6z}=-z-4 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}