Whakaoti mō n
n=-7
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{-5n+14}\right)^{2}=\left(-n\right)^{2}
Pūruatia ngā taha e rua o te whārite.
-5n+14=\left(-n\right)^{2}
Tātaihia te \sqrt{-5n+14} mā te pū o 2, kia riro ko -5n+14.
-5n+14=n^{2}
Tātaihia te -n mā te pū o 2, kia riro ko n^{2}.
-5n+14-n^{2}=0
Tangohia te n^{2} mai i ngā taha e rua.
-n^{2}-5n+14=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-5 ab=-14=-14
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -n^{2}+an+bn+14. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-14 2,-7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -14.
1-14=-13 2-7=-5
Tātaihia te tapeke mō ia takirua.
a=2 b=-7
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(-n^{2}+2n\right)+\left(-7n+14\right)
Tuhia anō te -n^{2}-5n+14 hei \left(-n^{2}+2n\right)+\left(-7n+14\right).
n\left(-n+2\right)+7\left(-n+2\right)
Tauwehea te n i te tuatahi me te 7 i te rōpū tuarua.
\left(-n+2\right)\left(n+7\right)
Whakatauwehea atu te kīanga pātahi -n+2 mā te whakamahi i te āhuatanga tātai tohatoha.
n=2 n=-7
Hei kimi otinga whārite, me whakaoti te -n+2=0 me te n+7=0.
\sqrt{-5\times 2+14}=-2
Whakakapia te 2 mō te n i te whārite \sqrt{-5n+14}=-n.
2=-2
Whakarūnātia. Ko te uara n=2 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
\sqrt{-5\left(-7\right)+14}=-\left(-7\right)
Whakakapia te -7 mō te n i te whārite \sqrt{-5n+14}=-n.
7=7
Whakarūnātia. Ko te uara n=-7 kua ngata te whārite.
n=-7
Ko te whārite \sqrt{14-5n}=-n he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}