Whakaoti mō x (complex solution)
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{-2x-4}\right)^{2}=\left(\sqrt{-9+3x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
-2x-4=\left(\sqrt{-9+3x}\right)^{2}
Tātaihia te \sqrt{-2x-4} mā te pū o 2, kia riro ko -2x-4.
-2x-4=-9+3x
Tātaihia te \sqrt{-9+3x} mā te pū o 2, kia riro ko -9+3x.
-2x-4-3x=-9
Tangohia te 3x mai i ngā taha e rua.
-5x-4=-9
Pahekotia te -2x me -3x, ka -5x.
-5x=-9+4
Me tāpiri te 4 ki ngā taha e rua.
-5x=-5
Tāpirihia te -9 ki te 4, ka -5.
x=\frac{-5}{-5}
Whakawehea ngā taha e rua ki te -5.
x=1
Whakawehea te -5 ki te -5, kia riro ko 1.
\sqrt{-2-4}=\sqrt{-9+3\times 1}
Whakakapia te 1 mō te x i te whārite \sqrt{-2x-4}=\sqrt{-9+3x}.
i\times 6^{\frac{1}{2}}=i\times 6^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=1 kua ngata te whārite.
x=1
Ko te whārite \sqrt{-2x-4}=\sqrt{3x-9} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}