Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{-2x-4}\right)^{2}=\left(\sqrt{-9+3x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
-2x-4=\left(\sqrt{-9+3x}\right)^{2}
Tātaihia te \sqrt{-2x-4} mā te pū o 2, kia riro ko -2x-4.
-2x-4=-9+3x
Tātaihia te \sqrt{-9+3x} mā te pū o 2, kia riro ko -9+3x.
-2x-4-3x=-9
Tangohia te 3x mai i ngā taha e rua.
-5x-4=-9
Pahekotia te -2x me -3x, ka -5x.
-5x=-9+4
Me tāpiri te 4 ki ngā taha e rua.
-5x=-5
Tāpirihia te -9 ki te 4, ka -5.
x=\frac{-5}{-5}
Whakawehea ngā taha e rua ki te -5.
x=1
Whakawehea te -5 ki te -5, kia riro ko 1.
\sqrt{-2-4}=\sqrt{-9+3\times 1}
Whakakapia te 1 mō te x i te whārite \sqrt{-2x-4}=\sqrt{-9+3x}.
i\times 6^{\frac{1}{2}}=i\times 6^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=1 kua ngata te whārite.
x=1
Ko te whārite \sqrt{-2x-4}=\sqrt{3x-9} he rongoā ahurei.