Whakaoti mō w
w=9
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{-2w+43}\right)^{2}=\left(w-4\right)^{2}
Pūruatia ngā taha e rua o te whārite.
-2w+43=\left(w-4\right)^{2}
Tātaihia te \sqrt{-2w+43} mā te pū o 2, kia riro ko -2w+43.
-2w+43=w^{2}-8w+16
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(w-4\right)^{2}.
-2w+43-w^{2}=-8w+16
Tangohia te w^{2} mai i ngā taha e rua.
-2w+43-w^{2}+8w=16
Me tāpiri te 8w ki ngā taha e rua.
6w+43-w^{2}=16
Pahekotia te -2w me 8w, ka 6w.
6w+43-w^{2}-16=0
Tangohia te 16 mai i ngā taha e rua.
6w+27-w^{2}=0
Tangohia te 16 i te 43, ka 27.
-w^{2}+6w+27=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=6 ab=-27=-27
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -w^{2}+aw+bw+27. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,27 -3,9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -27.
-1+27=26 -3+9=6
Tātaihia te tapeke mō ia takirua.
a=9 b=-3
Ko te otinga te takirua ka hoatu i te tapeke 6.
\left(-w^{2}+9w\right)+\left(-3w+27\right)
Tuhia anō te -w^{2}+6w+27 hei \left(-w^{2}+9w\right)+\left(-3w+27\right).
-w\left(w-9\right)-3\left(w-9\right)
Tauwehea te -w i te tuatahi me te -3 i te rōpū tuarua.
\left(w-9\right)\left(-w-3\right)
Whakatauwehea atu te kīanga pātahi w-9 mā te whakamahi i te āhuatanga tātai tohatoha.
w=9 w=-3
Hei kimi otinga whārite, me whakaoti te w-9=0 me te -w-3=0.
\sqrt{-2\times 9+43}=9-4
Whakakapia te 9 mō te w i te whārite \sqrt{-2w+43}=w-4.
5=5
Whakarūnātia. Ko te uara w=9 kua ngata te whārite.
\sqrt{-2\left(-3\right)+43}=-3-4
Whakakapia te -3 mō te w i te whārite \sqrt{-2w+43}=w-4.
7=-7
Whakarūnātia. Ko te uara w=-3 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
w=9
Ko te whārite \sqrt{43-2w}=w-4 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}