Whakaoti mō x
x=\frac{y-3}{2}
Whakaoti mō y
y=2x+3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(\sqrt{x^{2}-4x+4+\left(y-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
\left(\sqrt{x^{2}-4x+4+y^{2}-4y+4}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(y-2\right)^{2}.
\left(\sqrt{x^{2}-4x+8+y^{2}-4y}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Tāpirihia te 4 ki te 4, ka 8.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Tātaihia te \sqrt{x^{2}-4x+8+y^{2}-4y} mā te pū o 2, kia riro ko x^{2}-4x+8+y^{2}-4y.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{\left(x+2\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Ko te tauaro o -2 ko 2.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+4+\left(y-4\right)^{2}}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+4+y^{2}-8y+16}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(y-4\right)^{2}.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+20+y^{2}-8y}\right)^{2}
Tāpirihia te 4 ki te 16, ka 20.
x^{2}-4x+8+y^{2}-4y=x^{2}+4x+20+y^{2}-8y
Tātaihia te \sqrt{x^{2}+4x+20+y^{2}-8y} mā te pū o 2, kia riro ko x^{2}+4x+20+y^{2}-8y.
x^{2}-4x+8+y^{2}-4y-x^{2}=4x+20+y^{2}-8y
Tangohia te x^{2} mai i ngā taha e rua.
-4x+8+y^{2}-4y=4x+20+y^{2}-8y
Pahekotia te x^{2} me -x^{2}, ka 0.
-4x+8+y^{2}-4y-4x=20+y^{2}-8y
Tangohia te 4x mai i ngā taha e rua.
-8x+8+y^{2}-4y=20+y^{2}-8y
Pahekotia te -4x me -4x, ka -8x.
-8x+y^{2}-4y=20+y^{2}-8y-8
Tangohia te 8 mai i ngā taha e rua.
-8x+y^{2}-4y=12+y^{2}-8y
Tangohia te 8 i te 20, ka 12.
-8x-4y=12+y^{2}-8y-y^{2}
Tangohia te y^{2} mai i ngā taha e rua.
-8x-4y=12-8y
Pahekotia te y^{2} me -y^{2}, ka 0.
-8x=12-8y+4y
Me tāpiri te 4y ki ngā taha e rua.
-8x=12-4y
Pahekotia te -8y me 4y, ka -4y.
\frac{-8x}{-8}=\frac{12-4y}{-8}
Whakawehea ngā taha e rua ki te -8.
x=\frac{12-4y}{-8}
Mā te whakawehe ki te -8 ka wetekia te whakareanga ki te -8.
x=\frac{y-3}{2}
Whakawehe 12-4y ki te -8.
\sqrt{\left(\frac{y-3}{2}-2\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(\frac{y-3}{2}-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}
Whakakapia te \frac{y-3}{2} mō te x i te whārite \sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}.
\frac{1}{2}\left(65-30y+5y^{2}\right)^{\frac{1}{2}}=\frac{1}{2}\left(65-30y+5y^{2}\right)^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{y-3}{2} kua ngata te whārite.
x=\frac{y-3}{2}
Ko te whārite \sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(y-4\right)^{2}+\left(x-\left(-2\right)\right)^{2}} he rongoā ahurei.
\left(\sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(\sqrt{x^{2}-4x+4+\left(y-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
\left(\sqrt{x^{2}-4x+4+y^{2}-4y+4}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(y-2\right)^{2}.
\left(\sqrt{x^{2}-4x+8+y^{2}-4y}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Tāpirihia te 4 ki te 4, ka 8.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Tātaihia te \sqrt{x^{2}-4x+8+y^{2}-4y} mā te pū o 2, kia riro ko x^{2}-4x+8+y^{2}-4y.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{\left(x+2\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Ko te tauaro o -2 ko 2.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+4+\left(y-4\right)^{2}}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+4+y^{2}-8y+16}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(y-4\right)^{2}.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+20+y^{2}-8y}\right)^{2}
Tāpirihia te 4 ki te 16, ka 20.
x^{2}-4x+8+y^{2}-4y=x^{2}+4x+20+y^{2}-8y
Tātaihia te \sqrt{x^{2}+4x+20+y^{2}-8y} mā te pū o 2, kia riro ko x^{2}+4x+20+y^{2}-8y.
x^{2}-4x+8+y^{2}-4y-y^{2}=x^{2}+4x+20-8y
Tangohia te y^{2} mai i ngā taha e rua.
x^{2}-4x+8-4y=x^{2}+4x+20-8y
Pahekotia te y^{2} me -y^{2}, ka 0.
x^{2}-4x+8-4y+8y=x^{2}+4x+20
Me tāpiri te 8y ki ngā taha e rua.
x^{2}-4x+8+4y=x^{2}+4x+20
Pahekotia te -4y me 8y, ka 4y.
-4x+8+4y=x^{2}+4x+20-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
-4x+8+4y=4x+20
Pahekotia te x^{2} me -x^{2}, ka 0.
8+4y=4x+20+4x
Me tāpiri te 4x ki ngā taha e rua.
8+4y=8x+20
Pahekotia te 4x me 4x, ka 8x.
4y=8x+20-8
Tangohia te 8 mai i ngā taha e rua.
4y=8x+12
Tangohia te 8 i te 20, ka 12.
\frac{4y}{4}=\frac{8x+12}{4}
Whakawehea ngā taha e rua ki te 4.
y=\frac{8x+12}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
y=2x+3
Whakawehe 8x+12 ki te 4.
\sqrt{\left(x-2\right)^{2}+\left(2x+3-2\right)^{2}}=\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(2x+3-4\right)^{2}}
Whakakapia te 2x+3 mō te y i te whārite \sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}.
\left(5+5x^{2}\right)^{\frac{1}{2}}=\left(5+5x^{2}\right)^{\frac{1}{2}}
Whakarūnātia. Ko te uara y=2x+3 kua ngata te whārite.
y=2x+3
Ko te whārite \sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(y-4\right)^{2}+\left(x-\left(-2\right)\right)^{2}} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}