Whakaoti mō x
x=y+2
Whakaoti mō y
y=x-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(\sqrt{49-14x+x^{2}+\left(1-y\right)^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(7-x\right)^{2}.
\left(\sqrt{49-14x+x^{2}+1-2y+y^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(1-y\right)^{2}.
\left(\sqrt{50-14x+x^{2}-2y+y^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Tāpirihia te 49 ki te 1, ka 50.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Tātaihia te \sqrt{50-14x+x^{2}-2y+y^{2}} mā te pū o 2, kia riro ko 50-14x+x^{2}-2y+y^{2}.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{9-6x+x^{2}+\left(5-y\right)^{2}}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3-x\right)^{2}.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{9-6x+x^{2}+25-10y+y^{2}}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(5-y\right)^{2}.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{34-6x+x^{2}-10y+y^{2}}\right)^{2}
Tāpirihia te 9 ki te 25, ka 34.
50-14x+x^{2}-2y+y^{2}=34-6x+x^{2}-10y+y^{2}
Tātaihia te \sqrt{34-6x+x^{2}-10y+y^{2}} mā te pū o 2, kia riro ko 34-6x+x^{2}-10y+y^{2}.
50-14x+x^{2}-2y+y^{2}+6x=34+x^{2}-10y+y^{2}
Me tāpiri te 6x ki ngā taha e rua.
50-8x+x^{2}-2y+y^{2}=34+x^{2}-10y+y^{2}
Pahekotia te -14x me 6x, ka -8x.
50-8x+x^{2}-2y+y^{2}-x^{2}=34-10y+y^{2}
Tangohia te x^{2} mai i ngā taha e rua.
50-8x-2y+y^{2}=34-10y+y^{2}
Pahekotia te x^{2} me -x^{2}, ka 0.
-8x-2y+y^{2}=34-10y+y^{2}-50
Tangohia te 50 mai i ngā taha e rua.
-8x-2y+y^{2}=-16-10y+y^{2}
Tangohia te 50 i te 34, ka -16.
-8x+y^{2}=-16-10y+y^{2}+2y
Me tāpiri te 2y ki ngā taha e rua.
-8x+y^{2}=-16-8y+y^{2}
Pahekotia te -10y me 2y, ka -8y.
-8x=-16-8y+y^{2}-y^{2}
Tangohia te y^{2} mai i ngā taha e rua.
-8x=-16-8y
Pahekotia te y^{2} me -y^{2}, ka 0.
-8x=-8y-16
He hanga arowhānui tō te whārite.
\frac{-8x}{-8}=\frac{-8y-16}{-8}
Whakawehea ngā taha e rua ki te -8.
x=\frac{-8y-16}{-8}
Mā te whakawehe ki te -8 ka wetekia te whakareanga ki te -8.
x=y+2
Whakawehe -16-8y ki te -8.
\sqrt{\left(7-\left(y+2\right)\right)^{2}+\left(1-y\right)^{2}}=\sqrt{\left(3-\left(y+2\right)\right)^{2}+\left(5-y\right)^{2}}
Whakakapia te y+2 mō te x i te whārite \sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}=\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}.
\left(2y^{2}-12y+26\right)^{\frac{1}{2}}=\left(2y^{2}-12y+26\right)^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=y+2 kua ngata te whārite.
x=y+2
Ko te whārite \sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}=\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}} he rongoā ahurei.
\left(\sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(\sqrt{49-14x+x^{2}+\left(1-y\right)^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(7-x\right)^{2}.
\left(\sqrt{49-14x+x^{2}+1-2y+y^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(1-y\right)^{2}.
\left(\sqrt{50-14x+x^{2}-2y+y^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Tāpirihia te 49 ki te 1, ka 50.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Tātaihia te \sqrt{50-14x+x^{2}-2y+y^{2}} mā te pū o 2, kia riro ko 50-14x+x^{2}-2y+y^{2}.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{9-6x+x^{2}+\left(5-y\right)^{2}}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3-x\right)^{2}.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{9-6x+x^{2}+25-10y+y^{2}}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(5-y\right)^{2}.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{34-6x+x^{2}-10y+y^{2}}\right)^{2}
Tāpirihia te 9 ki te 25, ka 34.
50-14x+x^{2}-2y+y^{2}=34-6x+x^{2}-10y+y^{2}
Tātaihia te \sqrt{34-6x+x^{2}-10y+y^{2}} mā te pū o 2, kia riro ko 34-6x+x^{2}-10y+y^{2}.
50-14x+x^{2}-2y+y^{2}+10y=34-6x+x^{2}+y^{2}
Me tāpiri te 10y ki ngā taha e rua.
50-14x+x^{2}+8y+y^{2}=34-6x+x^{2}+y^{2}
Pahekotia te -2y me 10y, ka 8y.
50-14x+x^{2}+8y+y^{2}-y^{2}=34-6x+x^{2}
Tangohia te y^{2} mai i ngā taha e rua.
50-14x+x^{2}+8y=34-6x+x^{2}
Pahekotia te y^{2} me -y^{2}, ka 0.
-14x+x^{2}+8y=34-6x+x^{2}-50
Tangohia te 50 mai i ngā taha e rua.
-14x+x^{2}+8y=-16-6x+x^{2}
Tangohia te 50 i te 34, ka -16.
x^{2}+8y=-16-6x+x^{2}+14x
Me tāpiri te 14x ki ngā taha e rua.
x^{2}+8y=-16+8x+x^{2}
Pahekotia te -6x me 14x, ka 8x.
8y=-16+8x+x^{2}-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
8y=-16+8x
Pahekotia te x^{2} me -x^{2}, ka 0.
8y=8x-16
He hanga arowhānui tō te whārite.
\frac{8y}{8}=\frac{8x-16}{8}
Whakawehea ngā taha e rua ki te 8.
y=\frac{8x-16}{8}
Mā te whakawehe ki te 8 ka wetekia te whakareanga ki te 8.
y=x-2
Whakawehe -16+8x ki te 8.
\sqrt{\left(7-x\right)^{2}+\left(1-\left(x-2\right)\right)^{2}}=\sqrt{\left(3-x\right)^{2}+\left(5-\left(x-2\right)\right)^{2}}
Whakakapia te x-2 mō te y i te whārite \sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}=\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}.
\left(2x^{2}-20x+58\right)^{\frac{1}{2}}=\left(2x^{2}-20x+58\right)^{\frac{1}{2}}
Whakarūnātia. Ko te uara y=x-2 kua ngata te whārite.
y=x-2
Ko te whārite \sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}=\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}