Aromātai
12\sqrt{2}\approx 16.970562748
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\sqrt { ( 6 \sqrt { 6 } ) ^ { 2 } + ( 6 \sqrt { 2 } ) ^ { 2 } }
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{6^{2}\left(\sqrt{6}\right)^{2}+\left(6\sqrt{2}\right)^{2}}
Whakarohaina te \left(6\sqrt{6}\right)^{2}.
\sqrt{36\left(\sqrt{6}\right)^{2}+\left(6\sqrt{2}\right)^{2}}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\sqrt{36\times 6+\left(6\sqrt{2}\right)^{2}}
Ko te pūrua o \sqrt{6} ko 6.
\sqrt{216+\left(6\sqrt{2}\right)^{2}}
Whakareatia te 36 ki te 6, ka 216.
\sqrt{216+6^{2}\left(\sqrt{2}\right)^{2}}
Whakarohaina te \left(6\sqrt{2}\right)^{2}.
\sqrt{216+36\left(\sqrt{2}\right)^{2}}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\sqrt{216+36\times 2}
Ko te pūrua o \sqrt{2} ko 2.
\sqrt{216+72}
Whakareatia te 36 ki te 2, ka 72.
\sqrt{288}
Tāpirihia te 216 ki te 72, ka 288.
12\sqrt{2}
Tauwehea te 288=12^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{12^{2}\times 2} hei hua o ngā pūtake rua \sqrt{12^{2}}\sqrt{2}. Tuhia te pūtakerua o te 12^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}