Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{6^{2}\left(\sqrt{6}\right)^{2}+\left(6\sqrt{2}\right)^{2}}
Whakarohaina te \left(6\sqrt{6}\right)^{2}.
\sqrt{36\left(\sqrt{6}\right)^{2}+\left(6\sqrt{2}\right)^{2}}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\sqrt{36\times 6+\left(6\sqrt{2}\right)^{2}}
Ko te pūrua o \sqrt{6} ko 6.
\sqrt{216+\left(6\sqrt{2}\right)^{2}}
Whakareatia te 36 ki te 6, ka 216.
\sqrt{216+6^{2}\left(\sqrt{2}\right)^{2}}
Whakarohaina te \left(6\sqrt{2}\right)^{2}.
\sqrt{216+36\left(\sqrt{2}\right)^{2}}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\sqrt{216+36\times 2}
Ko te pūrua o \sqrt{2} ko 2.
\sqrt{216+72}
Whakareatia te 36 ki te 2, ka 72.
\sqrt{288}
Tāpirihia te 216 ki te 72, ka 288.
12\sqrt{2}
Tauwehea te 288=12^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{12^{2}\times 2} hei hua o ngā pūtake rua \sqrt{12^{2}}\sqrt{2}. Tuhia te pūtakerua o te 12^{2}.