Aromātai
11\sqrt{8458598091549332641}-3\approx 31992036022.821632385
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{25+6^{27}}-3
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\sqrt{25+1023490369077469249536}-3
Tātaihia te 6 mā te pū o 27, kia riro ko 1023490369077469249536.
\sqrt{1023490369077469249561}-3
Tāpirihia te 25 ki te 1023490369077469249536, ka 1023490369077469249561.
11\sqrt{8458598091549332641}-3
Tauwehea te 1023490369077469249561=11^{2}\times 8458598091549332641. Tuhia anō te pūtake rua o te hua \sqrt{11^{2}\times 8458598091549332641} hei hua o ngā pūtake rua \sqrt{11^{2}}\sqrt{8458598091549332641}. Tuhia te pūtakerua o te 11^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}