Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\times \frac{\sqrt{9}}{\sqrt{5.4+1.6}}-5
Tangohia te 8 i te 17, ka 9.
2\times \frac{3}{\sqrt{5.4+1.6}}-5
Tātaitia te pūtakerua o 9 kia tae ki 3.
2\times \frac{3}{\sqrt{7}}-5
Tāpirihia te 5.4 ki te 1.6, ka 7.
2\times \frac{3\sqrt{7}}{\left(\sqrt{7}\right)^{2}}-5
Whakangāwaritia te tauraro o \frac{3}{\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}.
2\times \frac{3\sqrt{7}}{7}-5
Ko te pūrua o \sqrt{7} ko 7.
\frac{2\times 3\sqrt{7}}{7}-5
Tuhia te 2\times \frac{3\sqrt{7}}{7} hei hautanga kotahi.
\frac{2\times 3\sqrt{7}}{7}-\frac{5\times 7}{7}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 5 ki te \frac{7}{7}.
\frac{2\times 3\sqrt{7}-5\times 7}{7}
Tā te mea he rite te tauraro o \frac{2\times 3\sqrt{7}}{7} me \frac{5\times 7}{7}, me tango rāua mā te tango i ō raua taurunga.
\frac{6\sqrt{7}-35}{7}
Mahia ngā whakarea i roto o 2\times 3\sqrt{7}-5\times 7.