Aromātai
\frac{6\sqrt{7}}{7}-5\approx -2.732213162
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\sqrt { ( 17 - 8 ) } : \sqrt { ( 5.4 + 1.6 ) } \cdot 2 - 5
Tohaina
Kua tāruatia ki te papatopenga
2\times \frac{\sqrt{9}}{\sqrt{5.4+1.6}}-5
Tangohia te 8 i te 17, ka 9.
2\times \frac{3}{\sqrt{5.4+1.6}}-5
Tātaitia te pūtakerua o 9 kia tae ki 3.
2\times \frac{3}{\sqrt{7}}-5
Tāpirihia te 5.4 ki te 1.6, ka 7.
2\times \frac{3\sqrt{7}}{\left(\sqrt{7}\right)^{2}}-5
Whakangāwaritia te tauraro o \frac{3}{\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}.
2\times \frac{3\sqrt{7}}{7}-5
Ko te pūrua o \sqrt{7} ko 7.
\frac{2\times 3\sqrt{7}}{7}-5
Tuhia te 2\times \frac{3\sqrt{7}}{7} hei hautanga kotahi.
\frac{2\times 3\sqrt{7}}{7}-\frac{5\times 7}{7}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 5 ki te \frac{7}{7}.
\frac{2\times 3\sqrt{7}-5\times 7}{7}
Tā te mea he rite te tauraro o \frac{2\times 3\sqrt{7}}{7} me \frac{5\times 7}{7}, me tango rāua mā te tango i ō raua taurunga.
\frac{6\sqrt{7}-35}{7}
Mahia ngā whakarea i roto o 2\times 3\sqrt{7}-5\times 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}