Aromātai
4\left(\sqrt{634}-\sqrt{629}\right)\approx 0.397936864
Tauwehe
4 {(\sqrt{634} - \sqrt{629})} = 0.397936864
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{12^{2}+100^{2}}-\sqrt{8^{2}+100^{2}}
Tāpirihia te 10 ki te 2, ka 12.
\sqrt{144+100^{2}}-\sqrt{8^{2}+100^{2}}
Tātaihia te 12 mā te pū o 2, kia riro ko 144.
\sqrt{144+10000}-\sqrt{8^{2}+100^{2}}
Tātaihia te 100 mā te pū o 2, kia riro ko 10000.
\sqrt{10144}-\sqrt{8^{2}+100^{2}}
Tāpirihia te 144 ki te 10000, ka 10144.
4\sqrt{634}-\sqrt{8^{2}+100^{2}}
Tauwehea te 10144=4^{2}\times 634. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 634} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{634}. Tuhia te pūtakerua o te 4^{2}.
4\sqrt{634}-\sqrt{64+100^{2}}
Tātaihia te 8 mā te pū o 2, kia riro ko 64.
4\sqrt{634}-\sqrt{64+10000}
Tātaihia te 100 mā te pū o 2, kia riro ko 10000.
4\sqrt{634}-\sqrt{10064}
Tāpirihia te 64 ki te 10000, ka 10064.
4\sqrt{634}-4\sqrt{629}
Tauwehea te 10064=4^{2}\times 629. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 629} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{629}. Tuhia te pūtakerua o te 4^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}