Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\left(1+36\right)\left(\left(\frac{144}{36}\right)^{2}-4\times \frac{121}{36}\right)}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\sqrt{37\left(\left(\frac{144}{36}\right)^{2}-4\times \frac{121}{36}\right)}
Tāpirihia te 1 ki te 36, ka 37.
\sqrt{37\left(4^{2}-4\times \frac{121}{36}\right)}
Whakawehea te 144 ki te 36, kia riro ko 4.
\sqrt{37\left(16-4\times \frac{121}{36}\right)}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\sqrt{37\left(16-\frac{121}{9}\right)}
Whakareatia te 4 ki te \frac{121}{36}, ka \frac{121}{9}.
\sqrt{37\times \frac{23}{9}}
Tangohia te \frac{121}{9} i te 16, ka \frac{23}{9}.
\sqrt{\frac{851}{9}}
Whakareatia te 37 ki te \frac{23}{9}, ka \frac{851}{9}.
\frac{\sqrt{851}}{\sqrt{9}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{851}{9}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{851}}{\sqrt{9}}.
\frac{\sqrt{851}}{3}
Tātaitia te pūtakerua o 9 kia tae ki 3.