Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\left(1+36\right)\left(\left(\frac{11}{3}\right)^{2}-4\times \frac{121}{36}\right)}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\sqrt{37\left(\left(\frac{11}{3}\right)^{2}-4\times \frac{121}{36}\right)}
Tāpirihia te 1 ki te 36, ka 37.
\sqrt{37\left(\frac{121}{9}-4\times \frac{121}{36}\right)}
Tātaihia te \frac{11}{3} mā te pū o 2, kia riro ko \frac{121}{9}.
\sqrt{37\left(\frac{121}{9}-\frac{4\times 121}{36}\right)}
Tuhia te 4\times \frac{121}{36} hei hautanga kotahi.
\sqrt{37\left(\frac{121}{9}-\frac{484}{36}\right)}
Whakareatia te 4 ki te 121, ka 484.
\sqrt{37\left(\frac{121}{9}-\frac{121}{9}\right)}
Whakahekea te hautanga \frac{484}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\sqrt{37\times 0}
Tangohia te \frac{121}{9} i te \frac{121}{9}, ka 0.
\sqrt{0}
Whakareatia te 37 ki te 0, ka 0.
0
Tātaitia te pūtakerua o 0 kia tae ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}