Aromātai
\frac{5\sqrt{21}}{6}\approx 3.818813079
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\sqrt { ( \frac { 5 } { 2 } ) ^ { 2 } + \frac { 25 } { 3 } }
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{25}{4}+\frac{25}{3}}
Tātaihia te \frac{5}{2} mā te pū o 2, kia riro ko \frac{25}{4}.
\sqrt{\frac{75}{12}+\frac{100}{12}}
Ko te maha noa iti rawa atu o 4 me 3 ko 12. Me tahuri \frac{25}{4} me \frac{25}{3} ki te hautau me te tautūnga 12.
\sqrt{\frac{75+100}{12}}
Tā te mea he rite te tauraro o \frac{75}{12} me \frac{100}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{\frac{175}{12}}
Tāpirihia te 75 ki te 100, ka 175.
\frac{\sqrt{175}}{\sqrt{12}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{175}{12}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{175}}{\sqrt{12}}.
\frac{5\sqrt{7}}{\sqrt{12}}
Tauwehea te 175=5^{2}\times 7. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 7} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{7}. Tuhia te pūtakerua o te 5^{2}.
\frac{5\sqrt{7}}{2\sqrt{3}}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
\frac{5\sqrt{7}\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{5\sqrt{7}}{2\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{5\sqrt{7}\sqrt{3}}{2\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{5\sqrt{21}}{2\times 3}
Hei whakarea \sqrt{7} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{5\sqrt{21}}{6}
Whakareatia te 2 ki te 3, ka 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}